Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2361946, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38845409

RESUMO

Introduction COVID-19 vaccines may be administered with other vaccines during the same healthcare visit. COVID-19 monovalent (Fall 2021) and bivalent (Fall 2022) vaccine recommendations coincided with annual seasonal influenza vaccination. Data describing the frequency of the co-administration of COVID-19 vaccines with other vaccines are limited. Methods We used V-safe, a voluntary smartphone-based U.S. safety surveillance system established by the CDC, to describe trends in the administration of COVID-19 vaccines with other vaccines reported to V-safe during December 14, 2020 - May 19, 2023. Results Of the 21 million COVID-19 vaccinations reported to V-safe, 2.2% (459,817) were administered with at least 1 other vaccine. Co-administration most frequently occurred during the first week of October 2023 (27,092; 44.1%). Most reports of co-administration included influenza vaccine (393,003; 85.5%). Co-administration was most frequently reported for registrants aged 6 months-6 years (4,872; 4.4%). Conclusion Reports of co-administration to V-safe peaked during October 2023, when influenza vaccination most often occurs, possibly reflecting increased opportunities for multiple vaccinations and greater acceptability of the co-administration of COVID-19 vaccine with other vaccines, especially influenza vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Estados Unidos , Adolescente , Adulto , COVID-19/prevenção & controle , COVID-19/epidemiologia , Adulto Jovem , Criança , Pessoa de Meia-Idade , Idoso , Masculino , Feminino , Pré-Escolar , Lactente , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinação/métodos , Vacinação/tendências , Vacinação/estatística & dados numéricos , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Idoso de 80 Anos ou mais , SARS-CoV-2/imunologia
3.
Vaccine ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631952

RESUMO

The U.S. COVID-19 vaccination program, which commenced in December 2020, has been instrumental in preventing morbidity and mortality from COVID-19 disease. Safety monitoring has been an essential component of the program. The federal government undertook a comprehensive and coordinated approach to implement complementary safety monitoring systems and to communicate findings in a timely and transparent way to healthcare providers, policymakers, and the public. Monitoring involved both well-established and newly developed systems that relied on both spontaneous (passive) and active surveillance methods. Clinical consultation for individual cases of adverse events following vaccination was performed, and monitoring of special populations, such as pregnant persons, was conducted. This report describes the U.S. government's COVID-19 vaccine safety monitoring systems and programs used by the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the Department of Defense, the Department of Veterans Affairs, and the Indian Health Service. Using the adverse event of myocarditis following mRNA COVID-19 vaccination as a model, we demonstrate how the multiple, complementary monitoring systems worked to rapidly detect, assess, and verify a vaccine safety signal. In addition, longer-term follow-up was conducted to evaluate the recovery status of myocarditis cases following vaccination. Finally, the process for timely and transparent communication and dissemination of COVID-19 vaccine safety data is described, highlighting the responsiveness and robustness of the U.S. vaccine safety monitoring infrastructure during the national COVID-19 vaccination program.

4.
Sex Transm Dis ; 51(8): 509-515, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647241

RESUMO

BACKGROUND: In response to the 2022 mpox outbreak in the United States, people with higher potential for exposure to mpox were recommended to receive 2 doses of the JYNNEOS vaccine. Vaccine safety was monitored using 2 complementary systems. METHODS: The Vaccine Adverse Event Reporting System (VAERS) is a passive surveillance system that accepts reports of adverse events after vaccination. VAERS is capable of rapidly identifying rare adverse events and unusual reporting patterns. Medical records were requested and reviewed for adverse events of special interest, including myocarditis. Adverse event reporting rates were calculated as the number of verified adverse event cases divided by the number of JYNNEOS doses administered. V-safe for mpox was a voluntary smartphone-based vaccine safety surveillance system that sent enrolled persons text messages linked to health surveys asking about reactions and health impact events occurring after vaccination. RESULTS: There were 1,207,056 JYNNEOS doses administered in the United States. VAERS received 1927 reports for JYNNEOS. The myocarditis reporting rate per million doses was 2.69 after dose 1 and 8.64 after dose 2. V-safe had 213 participants complete at least one health survey. Rates of injection site and systemic reactions were similar in the first week after dose 1 and dose 2. CONCLUSIONS: JYNNEOS vaccine safety surveillance findings from VAERS and v-safe did not identify any unexpected safety concerns. The VAERS reporting rate for myocarditis was similar to previously published population background rates.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Surtos de Doenças , Mpox , Vacina Antivariólica , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Surtos de Doenças/prevenção & controle , Miocardite/epidemiologia , Miocardite/induzido quimicamente , Smartphone , Envio de Mensagens de Texto , Estados Unidos/epidemiologia , Vacinação/efeitos adversos , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/efeitos adversos , Mpox/prevenção & controle
5.
MMWR Morb Mortal Wkly Rep ; 72(23): 621-626, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289661

RESUMO

As of May 7, 2023, CDC's Advisory Committee on Immunization Practices (ACIP) recommends that all children aged 6 months-5 years receive at least 1 age-appropriate bivalent mRNA COVID-19 vaccine dose. Depending on their COVID-19 vaccination history and history of immunocompromise, these children might also need additional doses* (1-3). Initial vaccine safety findings after primary series vaccination among children aged 6 months-5 years showed that transient local and systemic reactions were common whereas serious adverse events were rare (4). To characterize the safety of a third mRNA COVID-19 vaccine dose among children aged 6 months-5 years, CDC reviewed adverse events and health surveys reported to v-safe, a voluntary smartphone-based U.S. safety surveillance system established by CDC to monitor health after COVID-19 vaccination (https://vsafe.cdc.gov/en/) and the Vaccine Adverse Event Reporting System (VAERS), a U.S. passive vaccine safety surveillance system co-managed by CDC and the Food and Drug Administration (FDA) (https://vaers.hhs.gov/) (5). During June 17, 2022-May 7, 2023, approximately 495,576 children aged 6 months-4 years received a third dose (monovalent or bivalent) of Pfizer-BioNTech vaccine and 63,919 children aged 6 months-5 years received a third dose of Moderna vaccine.† A third mRNA COVID-19 vaccination was recorded for 2,969 children in v-safe; approximately 37.7% had no reported reactions, and among those for whom reactions were reported, most reactions were mild and transient. VAERS received 536 reports after a third dose of mRNA COVID-19 vaccine for children in these age groups; 98.5% of reports were nonserious and most (78.4%) were classified as a vaccination error.§ No new safety concerns were identified. Preliminary safety findings after a third dose of COVID-19 vaccine for children aged 6 months-5 years are similar to those after other doses. Health care providers can counsel parents and guardians of young children that most reactions reported after vaccination with Pfizer-BioNTech or Moderna vaccine were mild and transient and that serious adverse events are rare.


Assuntos
COVID-19 , Criança , Pré-Escolar , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estados Unidos/epidemiologia , Vacinação , Vacinas/efeitos adversos
6.
JAMA Netw Open ; 6(2): e2253845, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723942

RESUMO

Importance: Because of historical associations between vaccines and Guillain-Barré syndrome (GBS), the condition was a prespecified adverse event of special interest for COVID-19 vaccine monitoring. Objective: To evaluate GBS reports to the Vaccine Adverse Event Reporting System (VAERS) and compare reporting patterns within 21 and 42 days after vaccination with Ad26.COV2.S (Janssen), BNT162b2 (Pfizer-BioNTech), and mRNA-1273 (Moderna) COVID-19 vaccines. Design, Setting, and Participants: This retrospective cohort study was conducted using US VAERS reports submitted during December 2020 to January 2022. GBS case reports verified as meeting the Brighton Collaboration case definition for GBS in US adults after COVID-19 vaccination were included. Exposures: Receipt of the Ad26.COV2.S, BNT162b2, or mRNA-1273 COVID-19 vaccine. Main Outcomes and Measures: Descriptive analyses of GBS case were conducted. GBS reporting rates within 21 and 42 days after Ad26.COV2.S, BNT162b2, or mRNA-1273 vaccination based on doses administered were calculated. Reporting rate ratios (RRRs) after receipt of Ad26.COV2.S vs BNT162b2 or mRNA-1273 within 21- and 42-day postvaccination intervals were calculated. Observed-to-expected (OE) ratios were estimated using published GBS background rates. Results: Among 487 651 785 COVID-19 vaccine doses, 17 944 515 doses (3.7%) were Ad26.COV2.S, 266 859 784 doses (54.7%) were BNT162b2, and 202 847 486 doses (41.6%) were mRNA-1273. Of 295 verified reports of individuals with GBS identified after COVID-19 vaccination (12 Asian [4.1%], 18 Black [6.1%], and 193 White [65.4%]; 17 Hispanic [5.8%]; 169 males [57.3%]; median [IQR] age, 59.0 [46.0-68.0] years), 275 reports (93.2%) documented hospitalization. There were 209 and 253 reports of GBS that occurred within 21 days and 42 days of vaccination, respectively. Within 21 days of vaccination, GBS reporting rates per 1 000 000 doses were 3.29 for Ad26.COV.2, 0.29 for BNT162b2, and 0.35 for mRNA-1273 administered; within 42 days of vaccination, they were 4.07 for Ad26.COV.2, 0.34 for BNT162b2, and 0.44 for mRNA-1273. GBS was more frequently reported within 21 days after Ad26.COV2.S than after BNT162b2 (RRR = 11.40; 95% CI, 8.11-15.99) or mRNA-1273 (RRR = 9.26; 95% CI, 6.57-13.07) vaccination; similar findings were observed within 42 days after vaccination (BNT162b2: RRR = 12.06; 95% CI, 8.86-16.43; mRNA-1273: RRR = 9.27; 95% CI, 6.80-12.63). OE ratios were 3.79 (95% CI, 2.88-4.88) for 21-day and 2.34 (95% CI, 1.83-2.94) for 42-day intervals after Ad26.COV2.S vaccination and less than 1 (not significant) after BNT162b2 and mRNA-1273 vaccination within both postvaccination periods. Conclusions and Relevance: This study found disproportionate reporting and imbalances after Ad26.COV2.S vaccination, suggesting that Ad26.COV2.S vaccination was associated with increased risk for GBS. No associations between mRNA COVID-19 vaccines and risk of GBS were observed.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Síndrome de Guillain-Barré , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/etiologia , Estudos Retrospectivos , Estados Unidos/epidemiologia , Vacinação/efeitos adversos
7.
Vaccine ; 41(7): 1310-1318, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36697313

RESUMO

The Centers for Disease Control and Prevention (CDC) developed and implemented the v-safe after vaccination health checker (v-safe) to monitor COVID-19 vaccine safety and as an active surveillance supplement to existing CDC vaccine safety monitoring programs. V-safe allows persons who received COVID-19 vaccines to report on post-vaccination experiences and how symptoms affected their health at daily, weekly, and monthly timepoints after vaccination. Text message reminders are sent linking to Internet-based health check-in surveys. Surveys include questions to identify v-safe participants who may be eligible to enroll in a separate pregnancy registry activity that evaluates maternal and infant outcomes in those pregnant at the time of vaccination or receiving vaccine in the periconception period. We describe the development of and enhancements to v-safe, data management, promotion and communication to vaccination sites and partners, publications, strengths and limitations, and implications for future systems. We also describe enrollment in v-safe over time and demographics of persons participating in v-safe during the first year of operation (December 14, 2020 - December 13, 2021). During this time, 9,342,582 persons submitted 131,543,087 v-safe surveys. The majority of participants were female (62.3 %) and non-Hispanic White (61.2 %); median age was 49.0 years. Most participants reported receiving an mRNA COVID-19 vaccine as their first recorded dose (95.0 %). V-safe contributed to CDC's vaccine safety assessments for FDA-authorized COVID-19 vaccines by enabling near real-time reporting of reactogenicity once the COVID-19 vaccination program began in the community, encouraging reports to the Vaccine Adverse Event Reporting System and facilitating enrollment in a large post-vaccination pregnancy registry. Given that v-safe is an integral component of the most comprehensive safety monitoring program in U.S. history, we believe that this approach has promise as a potential application for future pandemic response activities as well as rollout of novel vaccines in a non-pandemic context.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Gravidez , Centers for Disease Control and Prevention, U.S. , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Pandemias/prevenção & controle , Estados Unidos , Vacinação/efeitos adversos , Vacinas
8.
MMWR Morb Mortal Wkly Rep ; 72(2): 39-43, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634021

RESUMO

On October 12, 2022, the Food and Drug Administration (FDA) issued Emergency Use Authorizations (EUAs) for bivalent (mRNA encoding the spike protein from the SARS-CoV-2 ancestral strain and BA.4/BA.5 Omicron variants) formulations of Pfizer-BioNTech and Moderna mRNA COVID-19 vaccines for use as a single booster dose ≥2 months after completion of primary series or monovalent booster vaccination for children aged 5-11 years (Pfizer-BioNTech) and 6-17 years (Moderna); on December 8, 2022, FDA amended the EUAs to include children aged ≥6 months (1,2). The Advisory Committee on Immunization Practices (ACIP) recommends that all persons aged ≥6 months receive an age-appropriate bivalent mRNA booster dose (3). The safety of bivalent mRNA booster doses among persons aged ≥12 years has previously been described (4). To characterize the safety of bivalent mRNA booster doses among children aged 5-11 years after receipt of bivalent Pfizer-BioNTech and Moderna booster doses, CDC reviewed adverse events and health impacts reported to v-safe,* a voluntary, smartphone-based U.S. safety surveillance system established by CDC to monitor adverse events after COVID-19 vaccination, and to the Vaccine Adverse Event Reporting System (VAERS), a U.S. passive vaccine safety surveillance system co-managed by CDC and FDA† (5). During October 12-January 1, 2023, a total of 861,251 children aged 5-11 years received a bivalent Pfizer-BioNTech booster, and 92,108 children aged 6-11 years received a bivalent Moderna booster.§ Among 3,259 children aged 5-11 years registered in v-safe who received a bivalent booster dose, local (68.7%) and systemic reactions (49.5%) were commonly reported in the week after vaccination. Approximately 99.8% of reports to VAERS for children aged 5-11 years after bivalent booster vaccination were nonserious. There were no reports of myocarditis or death after bivalent booster vaccination. Eighty-four percent of VAERS reports were related to vaccination errors, 90.5% of which did not list an adverse health event. Local and systemic reactions reported after receipt of a bivalent booster dose are consistent with those reported after a monovalent booster dose; serious adverse events are rare. Vaccine providers should provide this information when counseling parents or guardians about bivalent booster vaccination. Preliminary safety findings from the first 11 weeks of bivalent booster vaccination among children aged 5-11 years are reassuring. Compared with the low risk of serious health effects after mRNA COVID-19 vaccination, the health effects of SARS-CoV-2 infection include death and serious long-term sequalae (6). ACIP recommends that all persons aged ≥6 months receive an age-appropriate bivalent mRNA booster dose ≥2 months after completion of a COVID-19 primary series or receipt of a monovalent booster dose.¶.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Criança , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas de mRNA , RNA Mensageiro , SARS-CoV-2 , Estados Unidos/epidemiologia
9.
MMWR Morb Mortal Wkly Rep ; 71(44): 1401-1406, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36327162

RESUMO

On August 31, 2022, the Food and Drug Administration (FDA) authorized bivalent formulations of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines; these vaccines include mRNA encoding the spike protein from the original (ancestral) strain of SARS-CoV-2 (the virus that causes COVID-19) and from the B.1.1.529 (Omicron) variants BA.4 and BA.5 (BA.4/BA.5). These bivalent mRNA vaccines were authorized for use as a single booster dose ≥2 months after completion of primary series or monovalent booster vaccination; Pfizer-BioNTech bivalent booster was authorized for persons aged ≥12 years and Moderna for adults aged ≥18 years.*,† On September 1, 2022, the Advisory Committee on Immunization Practices (ACIP) recommended that all persons aged ≥12 years receive an age-appropriate bivalent mRNA booster dose.§ To characterize the safety of bivalent mRNA booster doses, CDC reviewed adverse events and health impacts reported after receipt of bivalent Pfizer-BioNTech and Moderna booster doses during August 31-October 23, 2022, to v-safe,¶ a voluntary smartphone-based U.S. safety surveillance system established by CDC to monitor adverse events after COVID-19 vaccination, and the Vaccine Adverse Event Reporting System (VAERS),** a U.S. passive vaccine safety surveillance system managed by CDC and FDA (1). During August 31-October 23, 2022, approximately 14.4 million persons aged ≥12 years received a bivalent Pfizer-BioNTech booster dose, and 8.2 million adults aged ≥18 years received a bivalent Moderna booster dose.†† Among the 211,959 registrants aged ≥12 years who reported receiving a bivalent booster dose to v-safe, injection site and systemic reactions were frequently reported in the week after vaccination (60.8% and 54.8%, respectively); fewer than 1% of v-safe registrants reported receiving medical care. VAERS received 5,542 reports of adverse events after bivalent booster vaccination among persons aged ≥12 years; 95.5% of reports were nonserious and 4.5% were serious events. Health care providers and patients can be reassured that adverse events reported after a bivalent booster dose are consistent with those reported after monovalent doses. Health impacts after COVID-19 vaccination are less frequent and less severe than those associated with COVID-19 illness (2).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Estados Unidos/epidemiologia , Adolescente , Vacinas contra COVID-19/efeitos adversos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Vacinas Sintéticas/efeitos adversos , RNA Mensageiro , Vacinas de mRNA
10.
Vaccine ; 40(52): 7653-7659, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372665

RESUMO

BACKGROUND: Risk of experiencing a systemic adverse event (AE) after mRNA coronavirus disease 2019 (COVID-19) vaccination may be greater among persons with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; data on serious events are limited. We assessed if adults reporting systemic AEs resulting in emergency department visits or hospitalizations during days 0-7 after mRNA COVID-19 vaccine dose 1 were more likely to have a history of prior SARS-CoV-2 infection compared with persons who reported no or non-severe systemic AEs. METHODS: We conducted a nested case-control study using v-safe surveillance data. Participants were ≥ 18 years and received dose 1 during December 14, 2020─May 9, 2021. Cases reported severe systemic AEs 0-7 days after vaccination. Three controls were frequency matched per case by age, vaccination date, and days since vaccination. Follow-up surveys collected SARS-CoV-2 histories. RESULTS: Follow-up survey response rates were 38.6 % (potential cases) and 56.8 % (potential controls). In multivariable analyses including 3,862 case-patients and 11,586 controls, the odds of experiencing a severe systemic AE were 2.4 (Moderna, mRNA-1273; 95 % confidence interval [CI]: 1.89, 3.09) and 1.5 (Pfizer-BioNTech, BNT162b2; 95 % CI: 1.17, 2.02) times higher among participants with pre-vaccination SARS-CoV-2 histories compared with those without. Medical attention of any kind for symptoms during days 0-7 following dose 2 was not common among case-patients or controls. CONCLUSIONS: History of SARS-CoV-2 infection was significantly associated with severe systemic AEs following dose 1 of mRNA COVID-19 vaccine; the effect varied by vaccine received. Most participants who experienced severe systemic AEs following dose 1 did not require medical attention of any kind for symptoms following dose 2. Vaccine providers can use these findings to counsel patients who had pre-vaccination SARS-CoV-2 infection histories, experienced severe systemic AEs following dose 1, and are considering not receiving additional mRNA COVID-19 vaccine doses.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Vacinação , Adulto , Humanos , Vacina BNT162/efeitos adversos , Estudos de Casos e Controles , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos
12.
Lancet Digit Health ; 4(9): e667-e675, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961858

RESUMO

BACKGROUND: Anecdotal reports of menstrual irregularities after receiving COVID-19 vaccines have been observed in post-authorisation and post-licensure monitoring. We aimed to identify and classify reports of menstrual irregularities and vaginal bleeding after COVID-19 vaccination submitted to a voluntary active surveillance system. METHODS: This observational cohort study included recipients of a COVID-19 vaccine who were aged 18 years and older and reported their health experiences to v-safe, a voluntary smartphone-based active surveillance system for monitoring COVID-19 vaccine safety in the USA, from Dec 14, 2020, to Jan 9, 2022. Responses to survey questions on reactions after vaccination were extracted, and a pre-trained natural language inference model was used to identify and classify free-text comments related to menstruation and vaginal bleeding in response to an open-ended prompt about any symptoms at intervals after vaccination. Related responses were further categorised into themes of timing, severity, perimenopausal and postmenopausal bleeding, resumption of menses, and other responses. We examined associations between symptom theme and respondent characteristics, including vaccine type and dose number received, solicited local and systemic reactions reported, and health care sought. FINDINGS: 63 815 respondents reported on menstrual irregularities or vaginal bleeding, which included 62 679 female respondents (1·0% of 5 975 363 female respondents aged ≥18 years). Common themes identified included timing of menstruation (70 981 [83·6%] responses) and severity of menstrual symptoms (56 890 [67·0%] responses). Other themes included menopausal bleeding (3439 [4·0%] responses) and resumption of menses (2378 [2·8%] responses). Respondents submitting reports related to menopausal bleeding were more likely to seek health care than were those submitting reports related to other menstruation and vaginal bleeding themes. INTERPRETATION: Reports of heterogeneous symptoms related to menstruation or vaginal bleeding after COVID-19 vaccination are being submitted to v-safe, although this study is unable to characterise the relationship of these symptoms to COVID-19 vaccination. Methods that leverage pretrained models to interpret and classify unsolicited signs and symptoms in free-text reports offer promise in the initial evaluation of unexpected adverse events potentially associated with use of newly authorised or licensed vaccines. FUNDING: Centers for Disease Control and Prevention.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Feminino , Humanos , Distúrbios Menstruais , Estados Unidos , Hemorragia Uterina , Vacinação , Conduta Expectante
13.
MMWR Morb Mortal Wkly Rep ; 71(33): 1047-1051, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35980875

RESUMO

On May 17, 2022, the Food and Drug Administration (FDA) amended the Emergency Use Authorization (EUA) for BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine to authorize a homologous* booster dose for children aged 5-11 years ≥5 months after receipt of the second primary series dose† (1) based on findings from a clinical trial conducted among 401 children aged 5-11 years (2). To further characterize the safety of booster vaccination in this age group, CDC reviewed adverse events and health impact assessments after receipt of a Pfizer-BioNTech third dose reported to v-safe, a voluntary smartphone-based safety surveillance system for adverse events occurring after COVID-19 vaccination, and adverse events reported to the Vaccine Adverse Event Reporting System (VAERS), a passive vaccine safety surveillance system comanaged by CDC and FDA. During May 17-July 31, 2022, approximately 657,302 U.S. children aged 5-11 years received a third Pfizer-BioNTech dose (either a third primary series dose administered to immunocompromised children or a booster dose administered to immunocompetent children)§; 3,249 Pfizer-BioNTech third doses were reported to v-safe for children in this age group. Local and systemic reactions were reported to v-safe after a second dose and a third dose with similar frequency; some reactions (e.g., pain) were reported to be moderate or severe more frequently after a third dose. VAERS received 581 reports of adverse events after receipt of a Pfizer-BioNTech third dose by children aged 5-11 years; 578 (99.5%) reports were considered nonserious, and the most common events reported were vaccine administration errors. Three (0.5%) reports were considered serious; no reports of myocarditis or death were received. Local and systemic reactions were common among children after Pfizer-BioNTech third dose vaccination, but reports of serious adverse events were rare. Initial safety findings are consistent with those of the clinical trial (2).


Assuntos
COVID-19 , Vacinas , Sistemas de Notificação de Reações Adversas a Medicamentos , Vacina BNT162 , Vacinas contra COVID-19/efeitos adversos , Criança , Humanos , Imunização Secundária , Estados Unidos/epidemiologia , Vacinas/efeitos adversos
14.
MMWR Morb Mortal Wkly Rep ; 71(30): 971-976, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35900925

RESUMO

The Advisory Committee on Immunization Practices (ACIP) recommends that all persons aged ≥5 years receive 1 booster dose of a COVID-19 vaccine after completion of their primary series.* On March 29, 2022, the Food and Drug Administration (FDA) authorized a second mRNA booster dose ≥4 months after receipt of a first booster dose for adults aged ≥50 years and persons aged ≥12 years with moderate to severe immunocompromise (1,2). To characterize the safety of a second mRNA booster dose among persons aged ≥50 years, CDC reviewed adverse events and health impact assessments reported to v-safe and the Vaccine Adverse Event Reporting System (VAERS) after receipt of a second mRNA booster dose during March 29-July 10, 2022. V-safe is a voluntary smartphone-based U.S. active surveillance system that monitors adverse events occurring after COVID-19 vaccination. VAERS is a U.S. passive surveillance system for monitoring adverse events after vaccination, managed by CDC and FDA (3). During March 29-July 10, 2022, approximately 16.8 million persons in the United States aged ≥50 years received a fourth dose.† Among 286,380 v-safe registrants aged ≥50 years who reported receiving a second booster of an mRNA vaccine, 86.9% received vaccines from the same manufacturer for all 4 doses (i.e., homologous vaccination). Among registrants who reported homologous vaccination, injection site and systemic reactions were less frequent after the second booster dose than after the first booster dose. VAERS received 8,515 reports of adverse events after second mRNA booster doses among adults aged ≥50 years, including 8,073 (94.8%) nonserious and 442 (5.1%) serious events. CDC recommends that health care providers and patients be advised that local and systemic reactions are expected after a second booster dose, and that serious adverse events are uncommon.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Sistemas de Notificação de Reações Adversas a Medicamentos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Pessoa de Meia-Idade , Vacinas de mRNA/efeitos adversos
15.
JAMA Netw Open ; 5(7): e2222241, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838667

RESUMO

Importance: COVID-19 and seasonal influenza vaccines are essential in preventing respiratory infections and their potentially severe complications. Simultaneous administration of vaccines is efficient and may improve coverage with each vaccine. However, the safety of simultaneous administration of COVID-19 and influenza vaccines has not been well described. Objective: To evaluate adverse events and health impacts associated with simultaneously administered COVID-19 mRNA booster and seasonal influenza vaccines in the US population. Design, Setting, and Participants: In this retrospective cohort study, self-reported vaccine data were collected on days 0 to 7 after vaccination from September 22, 2021, through May 1, 2022, through v-safe, a voluntary smartphone-based monitoring system established by the Centers for Disease Control and Prevention. Participants were persons who voluntarily registered in v-safe following COVID-19 vaccination. Exposure: Receipt of simultaneously administered COVID-19 mRNA booster and seasonal influenza vaccines or COVID-19 mRNA booster alone. Main Outcomes and Measures: Local injection site and systemic reactions (eg, fatigue, headache, and myalgia) and health impacts reported by v-safe respondents in the week following COVID-19 mRNA booster vaccination. Adjusted odds ratios (aORs) were estimated for simultaneous administration compared with booster dose alone, controlling for sex, age, and week of vaccination. Results: Of a total of 981 099 persons aged 12 years or older registered with v-safe, simultaneous administration of COVID-19 mRNA booster and seasonal influenza vaccines was reported by 92 023 (9.4%) v-safe respondents; of these respondents, 54 926 (59.7%) were female, 36 234 (39.4%) were male, and sex was unknown for 863 (0.9%). In the week following vaccination, any systemic reactions were reported by 36 144 (58.9%) of 61 390 respondents who simultaneously received Pfizer-BioNTech booster and influenza vaccines and 21 027 (68.6%) of 30633 respondents who simultaneously received Moderna booster and influenza vaccines. Respondents who simultaneously received influenza and Pfizer-BioNTech booster vaccines (aOR, 1.08; 95% CI, 1.06-1.10) or influenza and Moderna booster vaccines (aOR, 1.11; 95% CI, 1.08-1.14) were slightly more likely to report any systemic reaction in the week following simultaneous vaccination than respondents who received only a COVID-19 mRNA vaccine booster. Conclusions and Relevance: In this study, compared with administration of COVID-19 mRNA booster vaccines alone, simultaneous administration of COVID-19 mRNA booster and seasonal influenza vaccines was associated with significant increases in reports of systemic reactions during days 0 to 7 following vaccination. These results may help better characterize the outcomes associated with simultaneously administered COVID-19 booster and influenza vaccines in the US population.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Influenza , Influenza Humana , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Feminino , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Masculino , RNA Mensageiro , Estudos Retrospectivos , Vacinação/efeitos adversos , Vacinas Sintéticas , Vacinas de mRNA
16.
MMWR Morb Mortal Wkly Rep ; 71(28): 899-903, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35834416

RESUMO

Persons with moderate to severe immunocompromising conditions are at risk for severe COVID-19, and their immune response to COVID-19 vaccination might not be as robust as the response in persons who are not immunocompromised* (1). The Advisory Committee on Immunization Practices (ACIP) recommends that immunocompromised persons aged ≥12 years complete a 3-dose primary mRNA COVID-19 vaccination series followed by a first booster dose (dose 4) ≥3 months after dose 3 and a second booster dose (dose 5) ≥4 months after dose 4.† To characterize the safety of first booster doses among immunocompromised persons aged ≥12 years during January 12, 2022-March 28, 2022, CDC reviewed adverse events and health impact assessments reported to v-safe and the Vaccine Adverse Event Reporting System (VAERS) during the week after receipt of an mRNA COVID-19 first booster dose. V-safe is a voluntary smartphone-based safety surveillance system for adverse events after COVID-19 vaccination. VAERS is a passive surveillance system for all vaccine-associated adverse events co-managed by CDC and the Food and Drug Administration (FDA). A fourth mRNA dose reported to v-safe or VAERS during January 12, 2022-March 28, 2022, was presumed to be an mRNA COVID-19 vaccine booster dose administered to an immunocompromised person because no other population was authorized to receive a fourth dose during that period (2,3). In the United States, during January 12, 2022-March 28, 2022, approximately 518,113 persons aged ≥12 years received a fourth dose. Among 4,015 v-safe registrants who received a fourth dose, local and systemic reactions were less frequently reported than were those following dose 3 of their primary series. VAERS received 145 reports after fourth doses; 128 (88.3%) were nonserious and 17 (11.7%) were serious. Health care providers, immunocompromised persons, and parents of immunocompromised children should be aware that local and systemic reactions are expected after a first booster mRNA COVID-19 vaccine dose, serious adverse events are rare, and safety findings were consistent with those previously described among nonimmunocompromised persons (4,5).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Sistemas de Notificação de Reações Adversas a Medicamentos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Estados Unidos/epidemiologia , Vacinas Sintéticas , Vacinas de mRNA
17.
JAMA Netw Open ; 5(4): e228879, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471572

RESUMO

Importance: Postauthorization monitoring of vaccines in a large population may detect rare adverse events not identified in clinical trials such as Guillain-Barré syndrome (GBS), which has a background rate of 1 to 2 per 100 000 person-years. Objective: To describe cases and incidence of GBS following COVID-19 vaccination and assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design, Setting, and Participants: This cohort study used surveillance data from the Vaccine Safety Datalink at 8 participating integrated health care systems in the United States. There were 10 158 003 participants aged at least 12 years. Data analysis was performed from November 2021 to February 2022. Exposures: Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine, including mRNA vaccine doses 1 and 2, December 13, 2020, to November 13, 2021. Main Outcomes and Measures: GBS with symptom onset in the 1 to 84 days after vaccination, confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared with the background rate, rate ratios (RRs) comparing GBS incidence in the 1 to 21 vs 22 to 42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs mRNA vaccination, using Poisson regression adjusted for age, sex, race and ethnicity, site, and calendar day. Results: From December 13, 2020, through November 13, 2021, 15 120 073 doses of COVID-19 vaccines were administered to 7 894 989 individuals (mean [SE] age, 46.5 [0.02] years; 8 138 318 doses received [53.8%] by female individuals; 3 671 199 doses received [24.3%] by Hispanic or Latino individuals, 2 215 064 doses received [14.7%] by Asian individuals, 6 266 424 doses received [41.4%] by White individuals), including 483 053 Ad.26.COV2.S doses, 8 806 595 BNT162b2 doses, and 5 830 425 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of GBS per 100 000 person-years in the 1 to 21 days after Ad.26.COV2.S was 32.4 (95% CI, 14.8-61.5), significantly higher than the background rate, and the adjusted RR in the 1 to 21 vs 22 to 42 days following Ad.26.COV2.S was 6.03 (95% CI, 0.79-147.79). Thirty-six cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate per 100 000 person-years in the 1 to 21 days after mRNA vaccines was 1.3 (95% CI, 0.7-2.4) and the adjusted RR in the 1 to 21 vs 22 to 42 days following mRNA vaccines was 0.56 (95% CI, 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs mRNA vaccines, the adjusted RR was 20.56 (95% CI, 6.94-64.66). Conclusions and Relevance: In this cohort study of COVID-19 vaccines, the incidence of GBS was elevated after receiving the Ad.26.COV2.S vaccine. Surveillance is ongoing.


Assuntos
COVID-19 , Síndrome de Guillain-Barré , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos de Coortes , Feminino , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/etiologia , Humanos , Incidência , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Vacinação/efeitos adversos , Vacinas Sintéticas , Vacinas de mRNA
18.
MMWR Morb Mortal Wkly Rep ; 71(9): 347-351, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239637

RESUMO

As of February 20, 2022, only BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine has been authorized for use in persons aged 12-17 years in the United States (1). The Food and Drug Administration (FDA) amended the Emergency Use Authorization (EUA) for Pfizer-BioNTech vaccine on December 9, 2021, to authorize a homologous* booster dose for persons aged 16-17 years ≥6 months after receipt of dose 2 (1). On January 3, 2022, authorization was expanded to include persons aged 12-15 years, and for all persons aged ≥12 years, the interval between dose 2 and booster dose was shortened to ≥5 months (1). To characterize the safety of Pfizer-BioNTech booster doses among persons aged 12-17 years (adolescents), CDC reviewed adverse events and health impact assessments during the week after receipt of a homologous Pfizer-BioNTech booster dose reported to v-safe, a voluntary smartphone-based safety surveillance system for adverse events after COVID-19 vaccination, and adverse events reported to the Vaccine Adverse Event Reporting System (VAERS), a passive vaccine safety surveillance system managed by CDC and FDA. During December 9, 2021-February 20, 2022, approximately 2.8 million U.S. adolescents received a Pfizer-BioNTech booster dose.† During this period, receipt of 3,418 Pfizer-BioNTech booster doses were reported to v-safe for adolescents. Reactions were reported to v-safe with equal or slightly higher frequency after receipt of a booster dose than after dose 2, were primarily mild to moderate in severity, and were most frequently reported the day after vaccination. VAERS received 914 reports of adverse events after Pfizer-BioNTech booster dose vaccination of adolescents; 837 (91.6%) were nonserious and 77 (8.4%) were serious. Health care providers, parents, and adolescents should be advised that local and systemic reactions are expected among adolescents after homologous Pfizer-BioNTech booster vaccination, and that serious adverse events are rare.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Vacina BNT162/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , Adolescente , Vacina BNT162/efeitos adversos , Vacinas contra COVID-19/efeitos adversos , Criança , Feminino , Humanos , Imunização Secundária/efeitos adversos , Masculino , Segurança do Paciente , Estados Unidos
19.
Lancet Infect Dis ; 22(6): 802-812, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271805

RESUMO

BACKGROUND: In December, 2020, two mRNA-based COVID-19 vaccines were authorised for use in the USA. We aimed to describe US surveillance data collected through the Vaccine Adverse Event Reporting System (VAERS), a passive system, and v-safe, a new active system, during the first 6 months of the US COVID-19 vaccination programme. METHODS: In this observational study, we analysed data reported to VAERS and v-safe during Dec 14, 2020, to June 14, 2021. VAERS reports were categorised as non-serious, serious, or death. Reporting rates were calculated using numbers of COVID-19 doses administered as the denominator. We analysed v-safe survey reports from days 0-7 after vaccination for reactogenicity, severity (mild, moderate, or severe), and health impacts (ie, unable to perform normal daily activities, unable to work, or received care from a medical professional). FINDINGS: During the study period, 298 792 852 doses of mRNA vaccines were administered in the USA. VAERS processed 340 522 reports: 313 499 (92·1%) were non-serious, 22 527 (6·6%) were serious (non-death), and 4496 (1·3%) were deaths. Over half of 7 914 583 v-safe participants self-reported local and systemic reactogenicity, more frequently after dose two (4 068 447 [71·7%] of 5 674 420 participants for local reactogenicity and 4 018 920 [70·8%] for systemic) than after dose one (4 644 989 [68·6%] of 6 775 515 participants for local reactogenicity and 3 573 429 [52·7%] for systemic). Injection-site pain (4 488 402 [66·2%] of 6 775 515 participants after dose one and 3 890 848 [68·6%] of 5 674 420 participants after dose two), fatigue (2 295 205 [33·9%] participants after dose one and 3 158 299 participants [55·7%] after dose two), and headache (1 831 471 [27·0%] participants after dose one and 2 623 721 [46·2%] participants after dose two) were commonly reported during days 0-7 following vaccination. Reactogenicity was reported most frequently the day after vaccination; most reactions were mild. More reports of being unable to work, do normal activities, or of seeking medical care occurred after dose two (1 821 421 [32·1%]) than after dose one (808 963 [11·9%]); less than 1% of participants reported seeking medical care after vaccination (56 647 [0·8%] after dose one and 53 077 [0·9%] after dose two). INTERPRETATION: Safety data from more than 298 million doses of mRNA COVID-19 vaccine administered in the first 6 months of the US vaccination programme show that most reported adverse events were mild and short in duration. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Sistemas de Notificação de Reações Adversas a Medicamentos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , RNA Mensageiro , Estados Unidos/epidemiologia , Vacinação/efeitos adversos , Vacinas Sintéticas , Vacinas de mRNA
20.
Vaccine ; 40(9): 1246-1252, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35125221

RESUMO

BACKGROUND: Between May 2005 and March 2007, three vaccines were recommended by the Advisory Committee on Immunization Practices for routine use in adolescents in the United States: quadrivalent meningococcal conjugate vaccine (MenACWY), tetanus, diphtheria and acellular pertussis vaccine (Tdap), and human papillomavirus vaccine (HPV). Understanding historical adolescent vaccination patterns may inform future vaccination coverage efforts for these and emerging adolescent vaccines, including COVID-19 vaccines. METHODS: This was a descriptive, retrospective cohort study. All vaccines administered to adolescents aged 11 through 18 years in the Vaccine Safety Datalink population between January 1, 2007 and December 31, 2016 were examined. Vaccination coverage was assessed by study year for ≥1 dose Tdap or Td, ≥1 dose Tdap, ≥1 dose MenACWY, ≥1 dose HPV, and ≥3 dose HPV. The proportion of vaccine visits with concurrent vaccination (≥2 vaccines administered at the same visit) was calculated by sex and study year. The most common vaccine combinations administered in the study population were described by sex for two time periods: 2007-2010 and 2011-2016. RESULTS: The number of 11-18-year-olds in the study population averaged 522,565 males and 503,112 females per study year. Between January 2007 and December 2016 there were 4,884,553 vaccine visits in this population (45% among males). The overall proportion of concurrent vaccine visits among males was 43% (33-61% by study year). Among females, 39% of all vaccine visits included concurrent vaccination (32-48% by study year). Vaccine coverage for Tdap, MenACWY, and 1- and 3-dose HPV increased across the study period. A wide variety of vaccine combinations were administered among both sexes and in both time periods. CONCLUSIONS: The high vaccine uptake and multitude of vaccine combinations administered concurrently in the adolescent population of the Vaccine Safety Datalink provide historical patterns with which to compare future adolescent vaccination campaigns.


Assuntos
Vacinação , Vacinas , Adolescente , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Vacinas contra Difteria, Tétano e Coqueluche Acelular/efeitos adversos , Feminino , Humanos , Esquemas de Imunização , Masculino , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/efeitos adversos , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/efeitos adversos , Estudos Retrospectivos , SARS-CoV-2 , Estados Unidos , Vacinação/tendências , Vacinas/administração & dosagem , Vacinas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA