RESUMO
Tissue fibrosis and extracellular matrix (ECM) stiffening promote tumour progression. The mechanisms by which ECM regulates its contacting cells have been extensively studied. However, how stiffness influences intercellular communications in the microenvironment for tumour progression remains unknown. Here we report that stiff ECM stimulates the release of exosomes from cancer cells. We delineate a molecular pathway that links stiff ECM to activation of Akt, which in turn promotes GTP loading to Rab8 that drives exosome secretion. We further show that exosomes generated from cells grown on stiff ECM effectively promote tumour growth. Proteomic analysis revealed that the Notch signalling pathway is activated in cells treated with exosomes derived from tumour cells grown on stiff ECM, consistent with our gene expression analysis of liver tissues from patients. Our study reveals a molecular mechanism that regulates exosome secretion and provides insight into how mechanical properties of the ECM control the tumour microenvironment for tumour growth.
Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Proteômica , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Transdução de Sinais , Microambiente TumoralRESUMO
The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl-glycyl-aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the ß1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein. The cellular ß1 integrins support adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that the ß1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for the prevention of viral infections.
Assuntos
Células Epiteliais Alveolares/metabolismo , Integrina beta1/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/virologia , Adesão Celular , Linhagem Celular , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos , Ligação Proteica , Receptores Virais/metabolismo , Células THP-1 , Internalização do VírusRESUMO
Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVß5, αVß1, and α5ß1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4ß1 and α5ß1, but also leukocyte-specific αLß2 and α4ß7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of ß1 integrins have exhibited αLß2- and α4ß7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLß2 and α4ß7 proteins. Thus, irisin represents a novel ligand for integrin αLß2 and α4ß7, capable of supporting lymphocyte cell adhesion independently of ß1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature.
RESUMO
Extracellular vesicles (EVs) have emerged as key players of intercellular communication and mediate crosstalk between tissues. Metastatic tumors release tumorigenic EVs, capable of pre-conditioning distal sites for organotropic metastasis. Growing evidence identifies muscle cell-derived EVs and myokines as potent mediators of cellular differentiation, proliferation, and metabolism. Muscle-derived EVs cargo myokines and other biological modulators like microRNAs, cytokines, chemokines, and prostaglandins hence, are likely to modulate the remodeling of niches in vital sites, such as liver and adipose tissues. Despite the scarcity of evidence to support a direct relationship between muscle-EVs and cancer metastasis, their indirect attribution to the regulation of niche remodeling and the establishment of pre-metastatic homing niches can be put forward. This hypothesis is supported by the role of muscle-derived EVs in findings gathered from other pathologies like inflammation and metabolic disorders. In this review, we present and discuss studies that evidently support the potential roles of muscle-derived EVs in the events of niche pre-conditioning and remodeling of metastatic tumor microenvironment. We highlight the potential contributions of the integrin-mediated interactions with an emerging myokine, irisin, to the regulation of EV-driven microenvironment remodeling in tumor metastasis. Further research into muscle-derived EVs and myokines in cancer progression is imperative and may hold promising contributions to advance our knowledge in the pathophysiology, progression and therapeutic management of metastatic cancers.
RESUMO
Expression of chemokine receptor CX3CR1 is reportedly restricted to several cell types including natural killer cells, cytotoxic T cells, monocytes, and macrophages. However, its expression and function on exosomes, which are nanosized extracellular vesicles known to act as mediators of intercellular communications, remain unclear. Here, we investigated CX3CR1 expression on exosomes isolated from various cell types. Although we found that all the exosomes tested in our study highly expressed CX3CR1, this chemokine receptor was expressed only inside, but barely on, their source cells. Moreover, exosomal CX3CR1 was capable of binding soluble CX3CL1. Therefore, our study suggests that CX3CR1 is a novel and ligand-competent exosome receptor.
RESUMO
Thrombomodulin is a molecule with anti-coagulant and anti-inflammatory properties. Recently, thrombomodulin was reported to be able to bind extracellular matrix proteins, such as fibronectin and collagen; however, whether thrombomodulin regulates the binding of human breast cancer-derived cell lines to the extracellular matrix remains unknown. To investigate this, we created an extracellular domain of thrombomodulin, TMD123-Fc, or domain deletion TM-Fc proteins (TM domain 12-Fc, TM domain 23-Fc) and examined their bindings to fibronectin in vitro by ELISA. The lectin-like domain of thrombomodulin was found to be essential for the binding of the extracellular domain of thrombomodulin to fibronectin. Using a V-well cell adhesion assay or flow cytometry analysis with fluorescent beads, we found that both TMD123-Fc and TMD12-Fc inhibited the binding between ß1 integrin of human breast cancer-derived cell lines and fibronectin. Furthermore, TMD123-Fc and TMD12-Fc inhibited the binding of activated integrins to fibronectin under shear stress in the presence of Ca2+ and Mg2+ but not under strong integrin-activation conditions in the presence of Mg2+ without Ca2+. This suggests that thrombomodulin Fc fusion protein administered exogenously at a relatively early stage of inflammation may be applied to the development of new therapies that inhibit the binding of ß1 integrin of breast cancer cell lines to fibronectin.
RESUMO
ABSTRACT: Deregulation of the immune system in sepsis plays the central role in the pathogenesis of multiple organ failure including septic lung injury. Group 2 innate lymphoid cells (ILC2s) have emerged as a new player in regulating immune homeostasis in the lung; however, the role of ILC2s in lung injury in sepsis remains poorly understood. Here, we investigated temporal changes in stimulatory and inhibitory receptor expression and intracellular type 2 cytokine expression of ILC2s in the lung using a cecal ligation and puncture mouse sepsis model. We found that IL-13 production by ILC2s, which were predominately composed of the resident natural ILC2 subset rather than the migratory inflammatory ILC2 subset, was reduced in the lungs of sepsis mice on day 1 and gradually restored through day 7. Although the expression levels of ST2 and inducible T-cell costimulator (stimulatory receptors) were high, IL-13 production by ILC2s was reduced while showing high programmed cell death 1 (PD-1) (inhibitory receptor) expression. Furthermore, using IL-33 knockout mice, we have shown that IL-33 regulates the capacity of ILC2s to produce IL-13, possibly through the modulation of ST2 and PD-1 expression and signaling in the septic lung. To the best of our knowledge, this is the first report showing differential costimulatory/inhibitory receptor expression on ILC2s in a septic lung in the context of an IL-33/IL-13 pathway-mediated type 2 immune response in the progression and resolution of inflammation. Our present findings contribute to a better understanding of the underlying immunological mechanism of ILC2s and may fill the critical knowledge gap regarding immune homeostasis in the lung that hampers the development of new therapeutic strategies for sepsis-induced acute lung injury.
Assuntos
Interleucina-33/fisiologia , Linfócitos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Sepse/imunologia , Animais , Feminino , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Integrins are transmembrane proteins that mediate cellular adhesion and migration to neighboring cells or the extracellular matrix, which is essential for cells to undertake diverse physiological and pathological pathways. For integrin activation and ligand binding, bidirectional signaling across the cell membrane is needed. Integrins aberrantly activated under pathologic conditions facilitate cellular infiltration into tissues, thereby causing inflammatory or tumorigenic progressions. Thus, integrins have emerged to the forefront as promising targets for developing therapeutics to treat autoimmune and cancer diseases. In contrast, it remains a fact that integrin-ligand interactions are beneficial for improving the health status of different tissues. Among these ligands, irisin, a myokine produced mainly by skeletal muscles in an exercise-dependent manner, has been shown to bind to integrin αVß5, alleviating symptoms under unfavorable conditions. These findings may provide insights into some of the underlying mechanisms by which exercise improves quality of life. This review will discuss the current understanding of integrin-ligand interactions in both health and disease. Likewise, we not only explain how diverse ligands play different roles in mediating cellular functions under both conditions via their interactions with integrins, but also specifically highlight the potential roles of the emerging ligand irisin in inflammation, cancer, and metabolic disease.
RESUMO
Exosomes represent an important subset of extracellular vesicles involved in inter-cellular communications in health and diseases. Exosomes secreted from cancer and immune cells travel to the specific tissues containing homing niches. The exosomes reaching the niches dynamically modify the gene expression and molecular architectures of the homing niche micro-environments. Cell adhesion molecule integrins regulate the tissue-specific homing patterns of not only cancer and immune cells, but also of the exosomes secreted from those cells. The exosome-mediated remodeling of the homing niches would affect immune lymphocyte migration and host defense, as well as cancer metastasis, thereby representing a potential therapeutic target.
Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Exossomos/imunologia , Exossomos/metabolismo , Integrinas/metabolismo , Animais , Feminino , Humanos , Integrinas/imunologia , Microambiente Tumoral/imunologiaRESUMO
Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1ß (IL-1ß). Interestingly, IL-1ß-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.
RESUMO
Integrins on exosomes have been shown to mediate binding to recipient cells, potentially playing important roles in controlling exosomal internalization and organ distributions. Although the ability of cellular integrins to mediate cell adhesion is known to be regulated by the cytoplasmic adaptor protein talin, whether the activity of exosomal integrins is similarly regulated by talin remains to be elucidated. Here we have studied this question in T-cell exosomes that surface express the integrins αLß2 and α4ß7. T-cells and T-cell exosomes engineered to lack talin-2 showed reduced binding to the integrin ligand ICAM-1 and MAdCAM-1 compared with control T-cells and exosomes, despite the fact that those T cells and exosomes express intact levels of the other isoform talin-1. In addition, talin-2-deficient T-cell exosomes were less efficiently internalized by endothelial cells, compared with control exosomes. These results suggest that the mechanisms of talin-mediated integrin regulation operate similarly in cells and exosomes.
Assuntos
Exossomos/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Linfócitos T/citologia , Linfócitos T/metabolismoRESUMO
We reported previously that leukocyte ß2 integrins (LFA-1 and Mac-1) bind to the serine/threonine-rich domain of thrombomodulin (TM) expressed on vascular endothelial cells (VECs). Recombinant human soluble TM (rhsTM, TMD123) has been approved as a therapeutic drug for septic disseminated intravascular coagulation. However, the roles of TMD123 on the adhesion of leukocyte integrins to VECs remain unclear. In the current study, we have revealed that an integrin-dependent binding between human peripheral blood mononuclear cells (PBMCs) and VECs was inhibited by TMD123. Next, using mutant proteins composed of isolated TM extracellular domains, we examined the structural characteristics responsible for the anti-adhesion properties of TMD123. Namely, we investigated whether the effects of the binding of TM and leukocytes was inhibited by the administration of TMD123. In fact, we confirmed that TMD123, TMD1, and TMD3 inhibited the binding of PBMCs to the immobilized recombinant proteins TMD123 and TMD3. These results indicate that TMD123 inhibited the adhesion of leukocytes to endothelial cells via ß2 integrins and endothelial TM. Moreover, since TMD1 might bind to leukocytes via other adhesion receptors than integrins, TMD1 and TMD3 appear to inhibit leukocyte binding to TM on VECs via different mechanisms. In summary, TMD123 (rhsTM), TMD1 or TMD3 is a promising treatment option for sepsis that attenuates integrin-dependent binding of leukocytes to VECs, and may inhibit the undesirable adhesion and migration of leukocytes to VECs in sepsis.