Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38154666

RESUMO

BACKGROUND: Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE: We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS: Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor ß repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS: Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS: Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.

3.
Blood ; 138(12): 1019-1033, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33876203

RESUMO

Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.


Assuntos
Cromossomos Humanos X/genética , Mutação , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Pré-Escolar , Cromossomos Humanos X/imunologia , Loci Gênicos , Humanos , Células Jurkat , Células Matadoras Naturais/imunologia , Linfopenia/genética , Linfopenia/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia
4.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232303

RESUMO

Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.


Assuntos
COVID-19/imunologia , COVID-19/mortalidade , Corticosteroides/uso terapêutico , Adulto , Idoso , Antibacterianos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/uso terapêutico , Azitromicina/uso terapêutico , Biomarcadores , COVID-19/genética , COVID-19/terapia , Calgranulina B/genética , Calgranulina B/imunologia , Estudos de Casos e Controles , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Ferritinas/genética , Ferritinas/imunologia , Perfilação da Expressão Gênica , Humanos , Hidroxicloroquina/uso terapêutico , Fatores Imunológicos/uso terapêutico , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-15/genética , Interleucina-15/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lactoferrina/genética , Lactoferrina/imunologia , Lipocalina-2/genética , Lipocalina-2/imunologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Pessoa de Meia-Idade , Análise Multivariada , NF-kappa B/genética , NF-kappa B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA