Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 384(6701): 1235-1240, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870279

RESUMO

Zinc (Zn) is vital to marine organisms. Its active uptake by phytoplankton results in a substantial depletion of dissolved Zn, and Zn bound to particulate organic matter replenishes dissolved Zn in the ocean through remineralization. However, we found that particulate Zn changes from Zn bound to phosphoryls in cells to recalcitrant inorganic pools that include biogenic silica, clays, and iron, manganese, and aluminum oxides in the Southern Ocean water column. The abundances of inorganic pools increase with depth and are the only phases preserved in sediments. Changes in the particulate-Zn speciation influence Zn bioavailability and explain the decoupling of Zn and phosphorus and the correlation of Zn and silicon in the water column. These findings reveal a new dimension to the ocean Zn cycle, implicating an underappreciated role of inorganic Zn particles and their impact on biological productivity.

2.
Science ; 338(6111): 1199-201, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23197531

RESUMO

Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.


Assuntos
Ferro/química , Ferro/metabolismo , Oceanos e Mares , Água do Mar/química , Regiões Antárticas , Disponibilidade Biológica , Compostos Férricos/análise , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/análise , Oxirredução , Fitoplâncton/metabolismo , Solubilidade , África do Sul
3.
Geobiology ; 10(6): 496-505, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22901282

RESUMO

By ~2.9 Ga, the time of the deposition of the Witwatersrand Supergroup, life is believed to have been well established on Earth. Carbon remnants of the microbial biosphere from this time period are evident in sediments from around the world. In the Witwatersrand Supergroup, the carbonaceous material is often concentrated in seams, closely associated with the gold deposits and may have been a mobile phase 2 billion years ago. Whereas today the carbon in the Witwatersrand Supergroup is presumed to be immobile, hollow hydrocarbon spheres ranging in size from <1 µm to >50 µm were discovered emanating from a borehole drilled through the carbon-bearing seams suggesting that a portion of the carbon may still be mobile in the deep subsurface. ToF-SIMS and STXM analyses revealed that these spheres contain a suite of alkane, alkenes, and aromatic compounds consistent with the described organic-rich carbon seams within the Witwatersrand Supergroup's auriferous reef horizons. Analysis by electron microscopy and ToF-SIMS, however, revealed that these spheres, although most likely composed of biogenic carbon and resembling biological organisms, do not retain any true structural, that is, fossil, information and were formed by an abiogenic process.


Assuntos
Fósseis , Hidrocarbonetos/análise , Microesferas , Solo/química , Microscopia Eletrônica , Compostos Orgânicos/análise , África do Sul , Análise Espectral
4.
Appl Environ Microbiol ; 72(4): 2918-24, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16597998

RESUMO

Although the role of iron in marine productivity has received a great deal of attention, no iron storage protein has been isolated from a marine microorganism previously. We describe an Fe-binding protein belonging to the Dps family (DNA binding protein from starved cells) in the N(2)-fixing marine cyanobacterium Trichodesmium erythraeum. A dps gene encoding a protein with significant levels of identity to members of the Dps family was identified in the genome of T. erythraeum. This gene codes for a putative Dps(T. erythraeurm) protein (Dps(tery)) with 69% primary amino acid sequence similarity to Synechococcus DpsA. We expressed and purified Dps(tery), and we found that Dps(tery), like other Dps proteins, is able to bind Fe and DNA and protect DNA from degradation by DNase. We also found that Dps(tery) binds phosphate, like other ferritin family proteins. Fe K near-edge X-ray absorption of Dps(tery) indicated that it has an iron core that resembles that of horse spleen ferritin.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cianobactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Dados de Sequência Molecular , Água do Mar/microbiologia
5.
J Synchrotron Radiat ; 8(Pt 2): 136-40, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11512711

RESUMO

A closely integrated theoretical and experimental effort to understand chemical bonding using X-ray spectroscopic probes is presented. Theoretical techniques to simulate XAS (X-ray absorption spectroscopy), XES (X-ray emission spectroscopy), RIXS (resonant inelastic X-ray scattering) and XPS (X-ray photoelectron spectroscopy) spectra have been developed and implemented within a density functional theory (DFT) framework. In combination with new experimental techniques, such as high-resolution XAS on liquid water under ambient conditions and XES on complicated surface adsorbates, new insight into e.g. hydrogen-bonded systems is obtained. For the (3x2) overlayer structure of glycine/Cu(110), earlier work has been extended to include adsorbate-adsorbate interactions. Structures are optimized for large cluster models and for periodic boundary conditions. It is found that specific features in the spectra arise from hydrogen-bonding interactions, which thus have important effects at the molecular-orbital level. XAS on liquid water shows a pronounced pre-edge feature with significant intensity, while the spectrum of ice shows only little intensity in this region. Theoretical spectrum calculations, based on instantaneous structures obtained from molecular-dynamics (MD) simulations, show that the pre-edge feature in the liquid is caused by water molecules with unsaturated hydrogen bonding. Some aspects of the theoretical simulations will be briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA