Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 143: 239-249, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273595

RESUMO

Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.


Assuntos
Alcoolismo/fisiopatologia , Medo/fisiologia , Hipocampo/fisiopatologia , Memória/fisiologia , Células-Tronco Neurais/fisiologia , Alcoolismo/patologia , Alcoolismo/psicologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Depressores do Sistema Nervoso Central/efeitos adversos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Etanol/efeitos adversos , Medo/efeitos dos fármacos , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Antígeno Ki-67/metabolismo , Masculino , Memória/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Ratos Long-Evans , Ratos Transgênicos , Caracteres Sexuais , Sinaptofisina/metabolismo
2.
J Neurosci ; 38(8): 2029-2042, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363584

RESUMO

Abstinence from methamphetamine addiction enhances proliferation and differentiation of neural progenitors and increases adult neurogenesis in the dentate gyrus (DG). We hypothesized that neurogenesis during abstinence contributes to context-driven drug-seeking behaviors. To test this hypothesis, the pharmacogenetic rat model (GFAP-TK rats) was used to conditionally and specifically ablate neurogenesis in the DG. Male GFAP-TK rats were trained to self-administer methamphetamine or sucrose and were administered the antiviral drug valganciclovir (Valcyte) to produce apoptosis of actively dividing GFAP type 1 stem-like cells to inhibit neurogenesis during abstinence. Hippocampus tissue was stained for Ki-67, NeuroD, and DCX to measure levels of neural progenitors and immature neurons, and was stained for synaptoporin to determine alterations in mossy fiber tracts. DG-enriched tissue punches were probed for CaMKII to measure alterations in plasticity-related proteins. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naive (controls) and methamphetamine experienced animals (+/-Valcyte). Spontaneous EPSCs and intrinsic excitability were recorded from granule cell neurons (GCNs). Reinstatement of methamphetamine seeking enhanced autophosphorylation of CaMKII, reduced mossy fiber density, and induced hyperexcitability of GCNs. Inhibition of neurogenesis during abstinence prevented context-driven methamphetamine seeking, and these effects correlated with reduced autophosphorylation of CaMKII, increased mossy fiber density, and reduced the excitability of GCNs. Context-driven sucrose seeking was unaffected. Together, the loss-of-neurogenesis data demonstrate that neurogenesis during abstinence assists with methamphetamine context-driven memory in rats, and that neurogenesis during abstinence is essential for the expression of synaptic proteins and plasticity promoting context-driven drug memory.SIGNIFICANCE STATEMENT Our work uncovers a mechanistic relationship between neurogenesis in the dentate gyrus and drug seeking. We report that the suppression of excessive neurogenesis during abstinence from methamphetamine addiction by a confirmed phamacogenetic approach blocked context-driven methamphetamine reinstatement and prevented maladaptive changes in expression and activation of synaptic proteins and basal synaptic function associated with learning and memory in the dentate gyrus. Our study is the first to demonstrate an interesting and dysfunctional role of adult hippocampal neurogenesis during abstinence to drug-seeking behavior in animals self-administering escalating amounts of methamphetamine. Together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Giro Denteado/fisiologia , Comportamento de Procura de Droga/fisiologia , Memória/fisiologia , Metanfetamina/farmacologia , Neurogênese/fisiologia , Animais , Proteína Duplacortina , Masculino , Ratos , Ratos Long-Evans , Ratos Transgênicos
3.
Brain Res ; 1663: 59-65, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284897

RESUMO

The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.


Assuntos
Hipocampo/fisiologia , Inanição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Grânulos Citoplasmáticos , Giro Denteado/metabolismo , Dieta , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Fibras Musgosas Hipocampais/fisiopatologia , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Inanição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA