Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(7): 886-902, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477279

RESUMO

BACKGROUND: The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS: We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS: Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS: Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.


Assuntos
Células Endoteliais , Proteínas rho de Ligação ao GTP , Junções Aderentes/metabolismo , Animais , Permeabilidade Capilar/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Pulmão/metabolismo , Camundongos , Proteínas rho de Ligação ao GTP/metabolismo
2.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404389

RESUMO

Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.


Assuntos
Células Endoteliais , Monócitos , Receptores CCR2 , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Ligantes , Macrófagos , Receptores CCR2/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
3.
Med ; 2(9): 1050-1071.e7, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34414383

RESUMO

BACKGROUND: T cells control viral infection, promote vaccine durability, and in coronavirus disease 2019 (COVID-19) associate with mild disease. We investigated whether prior measles-mumps-rubella (MMR) or tetanus-diphtheria-pertussis (Tdap) vaccination elicits cross-reactive T cells that mitigate COVID-19. METHODS: Antigen-presenting cells (APC) loaded ex vivo with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MMR, or Tdap antigens and autologous T cells from COVID-19-convalescent participants, uninfected individuals, and COVID-19 mRNA-vaccinated donors were co-cultured. T cell activation and phenotype were detected by interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assays and flow cytometry. ELISAs (enzyme-linked immunosorbant assays) and validation studies identified the APC-derived cytokine(s) driving T cell activation. TCR clonotyping and single-cell RNA sequencing (scRNA-seq) identified cross-reactive T cells and their transcriptional profile. A propensity-weighted analysis of COVID-19 patients estimated the effects of MMR and Tdap vaccination on COVID-19 outcomes. FINDINGS: High correlation was observed between T cell responses to SARS-CoV-2 (spike-S1 and nucleocapsid) and MMR and Tdap proteins in COVID-19-convalescent and -vaccinated individuals. The overlapping T cell population contained an effector memory T cell subset (effector memory re-expressing CD45RA on T cells [TEMRA]) implicated in protective, anti-viral immunity, and their detection required APC-derived IL-15, known to sensitize T cells to activation. Cross-reactive TCR repertoires detected in antigen-experienced T cells recognizing SARS-CoV-2, MMR, and Tdap epitopes had TEMRA features. Indices of disease severity were reduced in MMR- or Tdap-vaccinated individuals by 32%-38% and 20%-23%, respectively, among COVID-19 patients. CONCLUSIONS: Tdap and MMR memory T cells reactivated by SARS-CoV-2 may provide protection against severe COVID-19. FUNDING: This study was supported by a National Institutes of Health (R01HL065095, R01AI152522, R01NS097719) donation from Barbara and Amos Hostetter and the Chleck Foundation.


Assuntos
COVID-19 , Sarampo , Coqueluche , COVID-19/prevenção & controle , Humanos , Vacina contra Caxumba , Receptores de Antígenos de Linfócitos T , Vacina contra Rubéola , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T
4.
Nat Commun ; 12(1): 4791, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373452

RESUMO

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo , Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Movimento Celular , Proliferação de Células , Citocinas/imunologia , Células Dendríticas/imunologia , Endocitose , Humanos , Imunidade Inata , Imunoterapia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Espécies Reativas de Oxigênio , Transcriptoma
5.
bioRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972940

RESUMO

T cells are critical for control of viral infection and effective vaccination. We investigated whether prior Measles-Mumps-Rubella (MMR) or Tetanus-Diphtheria-pertussis (Tdap) vaccination elicit cross-reactive T cells that mitigate COVID-19. Using co-cultures of antigen presenting cells (APC) loaded with antigens and autologous T cells, we found a high correlation between responses to SARS-CoV-2 (Spike-S1 and Nucleocapsid) and MMR and Tdap vaccine proteins in both SARS-CoV-2 infected individuals and individuals immunized with mRNA-based SARS-CoV-2 vaccines. The overlapping T cell population contained effector memory T cells (TEMRA) previously implicated in anti-viral immunity and their activation required APC-derived IL-15. TCR- and scRNA-sequencing detected cross-reactive clones with TEMRA features among the cells recognizing SARS-CoV-2, MMR and Tdap epitopes. A propensity-weighted analysis of 73,582 COVID-19 patients revealed that severe disease outcomes (hospitalization and transfer to intensive care unit or death) were reduced in MMR or Tdap vaccinated individuals by 38-32% and 23-20% respectively. In summary, SARS-CoV-2 re-activates memory T cells generated by Tdap and MMR vaccines, which may reduce disease severity.

6.
Arthritis Rheumatol ; 66(5): 1327-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24470119

RESUMO

OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1ß (IL-1ß) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1ß-inducing factor, MSU crystals alone are insufficient to induce IL-1ß secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1ß secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1ß secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1ß secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1ß secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Gota/metabolismo , Inflamação/metabolismo , Ácido Úrico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Cristalização , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fagócitos/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Cell Microbiol ; 16(3): 364-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24118665

RESUMO

Binding to fibronectin (FN) is a crucial pathogenic factor of Staphylococcus aureus mediated by fibronectin-binding protein A (FnBP-A) and extracellular adherence protein (Eap). Recently, we have shown that binding of soluble CD163 (sCD163) to FN linked to these molecules exhibits anti-microbial effects by enhancing phagocytosis and killing activity of S. aureus-infected monocytes. However, it remained unclear whether sCD163 also influences the monocytic activation status. Using genetically modified staphylococcal strains we now identified FnBP-A, but not Eap, as activator of the inflammatory response of monocytes to infection. FnBP-A-mediated inflammatory activation was masked by sCD163 binding to S. aureus promoting efficient pathogen elimination. Thus, sCD163 protects monocytes from overwhelming activation upon staphylococcal infection by dampening the secretion of pro-inflammatory cytokines TNFα, IL-1ß, IL-6 and IL-8 and DAMP molecule MRP8/14. Moreover, sCD163 limited expression of pro-apoptotic transcription factor NR4A1 induced during S. aureus infection and inhibited induction of chemokine CXCL2promoting survival of staphylococci in vivo. sCD163-mediated effects were not due to general immunosuppression since MAP kinase activation and ROS production were unaltered during infection of monocytes with sCD163-bound bacteria. Thus, sCD163 promotes a specific defence of the immune system against FnBP-A-mediated inflammatory activation enabling successful pathogen elimination, tissue recovery and resolution of inflammation.


Assuntos
Adesinas Bacterianas/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Monócitos/imunologia , Receptores de Superfície Celular/imunologia , Staphylococcus aureus/imunologia , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/imunologia , Calgranulina B/biossíntese , Células Cultivadas , Quimiocina CXCL2/biossíntese , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/microbiologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Fagocitose/imunologia , Proteínas de Ligação a RNA/imunologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
8.
J Leukoc Biol ; 92(5): 1069-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892107

RESUMO

The Staphylococcus aureus pore-forming toxin PVL is most likely causative for life-threatening necrotizing infections, which are characterized by massive tissue inflammation and necrosis. Whereas the cytotoxic action of PVL on human neutrophils is already well established, the PVL effects on other sensitive cell types, such as monocytes and macrophages, are less clear. In this study, we used different types of human leukocytes (neutrophils, monocytes, macrophages, lymphocytes) to investigate cell-specific binding of PVL subunits and subsequent proinflammatory and cytotoxic effects. In all PVL-sensitive cells, we identified the binding of the subunit LukS-PV as the critical factor for PVL-induced cytotoxicity, which was followed by binding of LukF-PV. LukS-PV binds to monocytes, macrophages, and neutrophils but not to lymphocytes. Additionally, we showed that PVL binding to monocytes and macrophages leads to release of caspase-1-dependent proinflammatory cytokines IL-1ß and IL-18. PVL activates the NLRP3 inflammasome, a signaling complex of myeloid cells that is involved in caspase-1-dependent IL-1ß processing in response to pathogens and endogenous danger signals. Specific inhibition of this pathway at several steps significantly reduced inflammasome activation and subsequent pyronecrosis. Furthermore, we found that PAMPs and DAMPs derived from dying neutrophils can dramatically enhance this response by up-regulating pro-IL-1ß in monocytes/macrophages. This study analyzes a specific host signaling pathway that mediates PVL-induced inflammation and cytotoxicity, which has high relevance for CA-MRSA-associated and PVL-mediated pathogenic processes, such as necrotizing infections.


Assuntos
Toxinas Bacterianas/imunologia , Proteínas de Transporte/imunologia , Exotoxinas/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Leucocidinas/imunologia , Fagócitos/imunologia , Animais , Toxinas Bacterianas/metabolismo , Western Blotting , Exotoxinas/metabolismo , Humanos , Leucocidinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA