Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 611643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552104

RESUMO

Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.

2.
BMC Microbiol ; 19(1): 295, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842747

RESUMO

BACKGROUND: MCC/eisosomes are membrane microdomains that have been proposed to participate in the plasma membrane function in particular by regulating the homeostasis of lipids, promoting the recruitment of specific proteins and acting as provider of membrane reservoirs. RESULTS: Here we showed that several potential MCC/eisosomal protein encoding genes in the necrotrophic fungus A. brassicicola were overexpressed when germinated spores were exposed to antimicrobial defence compounds, osmotic and hydric stresses, which are major constraints encountered by the fungus during the plant colonization process. Mutants deficient for key MCC/eisosome components did not exhibit any enhanced susceptibility to phytoalexins and to applied stress conditions compared to the reference strain, except for a slight hypersensitivity of the ∆∆abpil1a-abpil1b strain to 2 M sorbitol. Depending on the considered mutants, we showed that the leaf and silique colonization processes were impaired by comparison to the wild-type, and assumed that these defects in aggressiveness were probably caused by a reduced appressorium formation rate. CONCLUSIONS: This is the first study on the role of MCC/eisosomes in the pathogenic process of a plant pathogenic fungus. A link between these membrane domains and the fungus ability to form functional penetration structures was shown, providing new potential directions for plant disease control strategies.


Assuntos
Alternaria/genética , Alternaria/patogenicidade , Proteínas Fúngicas/genética , Microdomínios da Membrana , Proteínas de Membrana/metabolismo , Alternaria/enzimologia , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Mutação , Doenças das Plantas/microbiologia , Estresse Fisiológico , Virulência
3.
Front Microbiol ; 10: 1969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543870

RESUMO

Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.

4.
Sci Rep ; 8(1): 14658, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279486

RESUMO

Maple sap is a complex nutrient matrix collected during spring to produce maple syrup. The characteristics of sap change over the production period and its composition directly impacts syrup quality. This variability could in part be attributed to changes in tree metabolism following dormancy release, but little is known about these changes in deciduous trees. Therefore, understanding the variation in sap composition associated with dormancy release could help pinpoint the causes of some defects in maple syrup. In particular, a defect known as "buddy", is an increasing concern for the industry. This off-flavor appears around the time of bud break, hence its name. To investigate sap variation related to bud break and the buddy defect, we monitored sap variation with respect to a dormancy release index (Sbb) and syrup quality. First, we looked at variation in amino acid content during this period. We observed a shift in amino acid relative proportions associated with dormancy release and found that most of them increase rapidly near the point of bud break, correlating with changes in syrup quality. Second, we identified biological processes that respond to variation in maple sap by performing a competition assay using the barcoded Saccharomyces cerevisiae prototroph deletion collection. This untargeted approach revealed that the organic sulfur content may be responsible for the development of the buddy off-flavor, and that dormancy release is necessary for the appearance of the defect, but other factors such as microbial activity may also be contributing.


Assuntos
Acer/química , Dormência de Plantas , Exsudatos de Plantas/química , Edulcorantes/normas , Biologia de Sistemas/métodos , Acer/fisiologia , Qualidade dos Alimentos , Armazenamento de Alimentos , Estações do Ano , Paladar , Árvores/química , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA