Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Dent Res ; 103(4): 398-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410924

RESUMO

The quest for finding a suitable scaffold system that supports cell survival and function and, ultimately, the regeneration of the pulp-dentin complex remains challenging. Herein, we hypothesized that dental pulp stem cells (DPSCs) encapsulated in a collagen-based hydrogel with varying stiffness would regenerate functional dental pulp and dentin when concentrically injected into the tooth slices. Collagen hydrogels with concentrations of 3 mg/mL (Col3) and 10 mg/mL (Col10) were prepared, and their stiffness and microstructure were assessed using a rheometer and scanning electron microscopy, respectively. DPSCs were then encapsulated in the hydrogels, and their viability and differentiation capacity toward endothelial and odontogenic lineages were evaluated using live/dead assay and quantitative real-time polymerase chain reaction. For in vivo experiments, DPSC-encapsulated collagen hydrogels with different stiffness, with or without growth factors, were injected into pulp chambers of dentin tooth slices and implanted subcutaneously in severe combined immunodeficient (SCID) mice. Specifically, vascular endothelial growth factor (VEGF [50 ng/mL]) was loaded into Col3 and bone morphogenetic protein (BMP2 [50 ng/mL]) into Col10. Pulp-dentin regeneration was evaluated by histological and immunofluorescence staining. Data were analyzed using 1-way or 2-way analysis of variance accordingly (α = 0.05). Rheology and microscopy data revealed that Col10 had a stiffness of 8,142 Pa with a more condensed and less porous structure, whereas Col3 had a stiffness of 735 Pa with a loose microstructure. Furthermore, both Col3 and Col10 supported DPSCs' survival. Quantitative polymerase chain reaction showed Col3 promoted significantly higher von Willebrand factor (VWF) and CD31 expression after 7 and 14 d under endothelial differentiation conditions (P < 0.05), whereas Col10 enhanced the expression of dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and collagen 1 (Col1) after 7, 14, and 21 d of odontogenic differentiation (P < 0.05). Hematoxylin and eosin and immunofluorescence (CD31 and vWF) staining revealed Col10+Col3+DPSCs+GFs enhanced pulp-dentin tissue regeneration. In conclusion, the collagen-based concentric construct modified by growth factors guided the specific lineage differentiation of DPSCs and promoted pulp-dentin tissue regeneration in vivo.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Fator de von Willebrand , Camundongos , Animais , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Hidrogéis/metabolismo , Camundongos SCID , Colágeno/metabolismo , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Dentina , Polpa Dentária , Proliferação de Células
2.
J Dent Res ; 102(2): 207-216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36281071

RESUMO

Dental pulp stem cells (DPSCs) can differentiate into vascular endothelial cells and display sprouting ability. During this process, DPSC responses to the extracellular microenvironment and cell-extracellular matrix interactions are critical in regulating their ultimate cell fate. Heparan sulfate (HS) glycosaminoglycan, a major component of extracellular matrix, plays important roles in various biological cell activities by interacting with growth factors and relative receptors. However, the regulatory function of HS on vasculogenesis of mesenchymal stem cells remains unclear. The objective of this study was to investigate the role of HS in endothelial differentiation and vasculogenesis of DPSCs. Our results show that an HS antagonist suppressed the proliferation and sprouting ability of DPSCs undergoing endothelial differentiation. Furthermore, expression of proangiogenic markers significantly declined with increasing dosages of the HS antagonist; in contrast, expression of stemness marker increased. Silencing of exostosin 1 (EXT1), a crucial glycosyltransferase for HS biosynthesis, in DPSCs using a short hairpin RNA significantly altered their gene expression profile. In addition, EXT1-silenced DPSCs expressed lower levels of endothelial differentiation markers and displayed a reduced vascular formation capacity compared with control DPSCs transduced with scrambled sequences. The sprouting ability of EXT1-silenced DPSCs was rescued by the addition of exogenous HS in vitro. Next, we subcutaneously transplanted biodegradable scaffolds seeded with EXT1-silenced or control DPSCs into immunodeficient mice. Lumen-like structures positive for human CD31 and von Willebrand factor were formed by green fluorescent protein-transduced DPSCs. Numbers of blood-containing vessels were significantly lower in scaffolds loaded with EXT1-silenced DPSCs than specimens implanted with control DPSCs. Collectively, our findings unveil the crucial role of HS on endothelial differentiation and vasculogenesis of DPSCs, opening new perspectives for the application of HS to tissue engineering and dental pulp regeneration.


Assuntos
Polpa Dentária , Células Endoteliais , Humanos , Animais , Camundongos , Regeneração , Diferenciação Celular/fisiologia , Células-Tronco/fisiologia , Heparitina Sulfato , Proliferação de Células , Células Cultivadas
3.
J Dent Res ; 100(13): 1427-1428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666561

Assuntos
Liderança
4.
J Dent Res ; 100(12): 1351-1358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33913364

RESUMO

Dental pulp regeneration is a promising approach to restore the vitality of necrotic teeth. We have previously reported the fabrication of scaffold-free cell constructs containing only dental pulp stem cells (DPSCs) and their ability to form pulp-like tissue in the pulpless tooth. However, the DPSC construct could not build pulp-like tissue with a full root length because it is difficult to induce blood vessels from a small root canal foramen. Therefore, we hypothesized that vascular structure could be preformed in the DPSC construct by employing endothelial differentiation capability of DPSCs, and vascularized constructs might facilitate dental pulp regeneration in the pulpless tooth. In this study, vascularized DPSC constructs were fabricated by inducing endothelial differentiation, and then we investigated the behavior of differentiated DPSCs, the internal structure of cell constructs, and their pulp regenerative ability in vivo. We observed that DPSCs positive for CD31 and von Willebrand factor were localized at the outer layer of constructs and formed a reticulated lumen structure. The cells constituting the outer layer of the construct expressed endothelial differentiation markers at higher levels than cells in the inner part. These results indicated that DPSCs in the outer layer differentiated into endothelial cells and formed vascular-like structures in the cell construct. Next, a vascularized DPSC construct was transplanted into the human pulpless tooth that was implanted into immunodeficient mice in the subcutaneous space. After 6 wk of implantation, the vascularized construct formed pulp-like tissues with higher density of human CD31-positive blood vessels when compared with specimens implanted with a DPSC construct without prevascularization. These results suggest that the vascular structure formed in the DPSC construct facilitated the blood supply and enhanced pulp regeneration. This study demonstrates that a vascularized DPSC construct is a prospective biomaterial as an implant for novel dental pulp regeneration.


Assuntos
Polpa Dentária , Células-Tronco , Animais , Diferenciação Celular , Células Endoteliais , Camundongos , Estudos Prospectivos , Regeneração
5.
Eur Cell Mater ; 41: 332-344, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724439

RESUMO

Dental pulp stem cells (DPSCs) constitute a unique group of cells endowed with multipotency, self-renewal, and capacity to regenerate the dental pulp tissue. While much has been learned about these cells in recent years, it is still unclear if each DPSC is multipotent or if unique sub-populations of DPSCs are "primed" to undergo specific differentiation paths. The purpose of the present study was to define whether a sub-population of DPSCs was uniquely primed to undergo vasculogenic differentiation. Permanent-tooth DPSCs or stem cells from human exfoliated deciduous teeth (SHED) were flow-sorted for vascular endothelial growth factor receptor 1 (VEGFR1) and exposed to vasculogenic differentiation medium, i.e., Microvascular-Endothelial-Cell-Growth-Medium-2-BulletKit™ supplemented with 50 ng/mL rhVEGF165 in the presence of 0 or 25 µg/mL anti-human VEGF antibody (bevacizumab; Genentech). In addition, sorted SHED (i.e., VEGFR1high or VEGFR1low) were seeded in biodegradable scaffolds and transplanted into the subcutaneous space of immunodeficient mice. Despite proliferating at a similar rate, VEGFR1high generated more in vitro sprouts than VEGFR1low cells (p < 0.05). Blockade of VEGF signaling with bevacizumab inhibited VEGFR1high-derived sprouts, demonstrating specificity of responses. Similarly, VEGFR1high SHED generated more blood vessels when transplanted into murine hosts than VEGFR1low cells (p < 0.05). Collectively, these data demonstrated that DPSCs contain a unique sub-population of cells defined by high VEGFR1 expression that are primed to differentiate into vascular endothelial cells. These data raise the possibility of purifying stem cells with high vasculogenic potential for regeneration of vascularized tissues or for vascular engineering in the treatment of ischemic conditions.


Assuntos
Polpa Dentária/metabolismo , Células-Tronco/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Camundongos , Regeneração/fisiologia , Transdução de Sinais/fisiologia
6.
J Dent Res ; 100(4): 377-386, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073679

RESUMO

Patients with advanced salivary gland mucoepidermoid carcinoma (MEC) are treated with surgery and radiotherapy, as current systemic therapies are largely ineffective. As such, current treatment frequently leads to poor long-term survival due to locoregional recurrence or metastases. We have shown that salivary gland cancer stem cells (CSCs) are resistant to platinum-based chemotherapy and drive tumor progression. The purpose of this study was to investigate the effect of therapeutic inhibition of mTOR (mechanistic target of rapamycin) on resistance of CSCs to cisplatin, a prototypic platinum-based chemotherapeutic agent. Viability assays determined the effect of several inhibitors of PI3k/mTOR signaling (e.g., temsirolimus, BKM120, AZD8055, PF4708671) and/or cisplatin on survival of human MEC cells. The impact of mTOR inhibitors and/or cisplatin on MEC stemness was examined with salisphere assays, flow cytometry for ALDH/CD44 (CSC markers for MEC), and Western blots for Bmi-1 expression (marker of stem cell self-renewal). Salivary gland MEC patient-derived xenografts were used to examine the effect of cisplatin and/or temsirolimus on CSCs in vivo. We observed that cisplatin induced mTOR and S6K1 phosphorylation, increased the number and size of MEC salispheres, and induced Bmi-1 expression and the fraction of CSCs in MEC models in vitro. Cisplatin also increased the fraction of CSCs in vivo. In contrast, mTOR inhibition (e.g., temsirolimus) blocked cisplatin-induced Bmi-1 expression and salisphere formation in vitro. Remarkably, temsirolimus slowed down tumor growth and decreased the fraction of CSCs (P < 0.05) even in presence of cisplatin in a short-term in vivo experiment. Collectively, these results demonstrate that therapeutic inhibition of mTOR ablates cytotoxic-resistant CSCs, and they suggest that a combination of an mTOR inhibitor and platinum-based chemotherapy might be beneficial to patients with salivary gland mucoepidermoid carcinoma.


Assuntos
Cisplatino , Neoplasias das Glândulas Salivares , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Neoplasias das Glândulas Salivares/tratamento farmacológico , Glândulas Salivares , Serina-Treonina Quinases TOR
7.
J Dent Res ; 99(9): 1102-1111, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471313

RESUMO

Interactions with the microenvironment modulate the fate of stem cells in perivascular niches in tissues (e.g., bone) and organs (e.g., liver). However, the functional relevance of the molecular crosstalk between endothelial cells and stem cells within the perivascular niche in dental pulps is unclear. Here, we tested the hypothesis that endothelial cell-initiated signaling is necessary to maintain self-renewal of dental pulp stem cells. Confocal microscopy showed that ALDH1high and Bmi-1high stem cells are preferentially localized in close proximity to blood vessels in physiological human dental pulps. Secondary orosphere assays revealed that endothelial cell-derived factors (e.g., interleukin-6 [IL-6]) promote self-renewal of dental pulp stem cells cultured in low-attachment conditions. Mechanistic studies demonstrated that endothelial cell-derived IL-6 activates IL-6R (IL-6 Receptor) and signal transducer and activator of transcription 3 (STAT3) signaling and induces expression of Bmi-1 (master regulator of stem cell self-renewal) in dental pulp stem cells. Transplantation of dental pulp stem cells stably transduced with small hairpin RNA (shRNA)-STAT3 into immunodeficient mice revealed a decrease in the number of blood vessels surrounded by ALDH1high or Bmi-1high cells (perivascular niches) compared to tissues formed upon transplantation of vector control stem cells. And finally, in vitro capillary sprouting assays revealed that inhibition of IL-6 or STAT3 signaling decreases the vasculogenic potential of dental pulp stem cells. Collectively, these data demonstrate that endothelial cell-derived IL-6 enhances the self-renewal of dental pulp stem cells via STAT3 signaling and induction of Bmi-1. These data suggest that a crosstalk between endothelial cells and stem cells within the perivascular niche is required for the maintenance of stem cell pools in dental pulps.


Assuntos
Autorrenovação Celular , Polpa Dentária , Interleucina-6 , Animais , Diferenciação Celular , Células Endoteliais , Interleucina-6/fisiologia , Camundongos , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Células-Tronco
8.
J Dent Res ; 99(4): 437-445, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32028818

RESUMO

It is known that dental pulp stem cells (DPSCs) can be induced to differentiate into vasculogenic endothelial (VE) cells. However, the process that results in sprouting and anastomosis of DPSC-derived vessels remains unclear. Here, we performed studies to understand the mechanisms underpinning the anastomosis of the host vasculature with blood vessels generated by DPSCs (a model for mesenchymal stem cells). VE-cadherin-silenced primary human DPSCs seeded in tooth slice/scaffolds and transplanted into the subcutaneous space of immunodeficient mice generated fewer functional blood vessels (i.e., anastomosed with the host vasculature) than control DPSCs transduced with scrambled sequences. Both VE-cadherin-silenced and mitogen-activated protein kinase kinase 1 (MEK1)-silenced cells showed a decrease in the number of capillary sprouts in vitro. Interestingly, DPSC stably transduced with a VE-cadherin reporter demonstrated that vascular endothelial growth factor (VEGF) induces VE-cadherin expression in sprouting DPSCs undergoing anastomosis, but not in quiescent DPSCs. To begin to understand the mechanisms regulating VE-cadherin, we stably silenced MEK1 and observed that VEGF was no longer able to induce VE-cadherin expression and capillary sprout formation. Notably ERG, a transcriptional factor downstream from MEK/ERK, binds to the promoter region of VE-cadherin (chip assay) and is induced by VEGF in DPSCs. Collectively, these data defined a signaling pathway triggered by VEGF that results in phosphorylation of MEK1/ERK and activation of ERG leading to expression of VE-cadherin, which is required for anastomosis of DPSC-derived blood vessels. In conclusion, these results unveiled a signaling pathway that enables the generation of functional blood vessels upon vasculogenic differentiation of DPSCs.


Assuntos
Células-Tronco , Anastomose Cirúrgica , Animais , Antígenos CD , Caderinas , Diferenciação Celular , Polpa Dentária , Humanos , Camundongos , Fator A de Crescimento do Endotélio Vascular
9.
J Dent Res ; 97(12): 1331-1338, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29995454

RESUMO

Previously, we reported that the fluorapatite (FA)-modified polycaprolactone (PCL) nanofiber could be an odontogenic/osteogenic inductive tissue-engineering scaffold by inducing stem cell differentiation and mineralization. The present study aimed to explore which of the signal pathways affected this differentiation and mineralization process. The Human Signal Transduction PathwayFinder RT2 Profiler PCR Array was used to analyze the involvement of potential signal transduction pathways during human dental pulp stem cell (DPSCs) osteogenic differentiation induced by FA-modified PCL nanofiber scaffolds. Based on the results, perturbation studies of the signaling pathways hedgehog, insulin, and Wnt were performed. Moreover, the autophagy process was studied, as indicated by the expression of the microtubule-associated protein 1 light chain 3A/B-II (LC3-II) and the cell osteogenic phenotypic changes. In a comparison of the cells grown on PCL + FA scaffolds and those on PCL-only scaffolds, the transcript expression of BMP2, BMP4, FOXA2, PTCH1, WNT1, and WNT2 (PCR array-labeled signal proteins of the hedgehog pathway); CEBPB, FASN, and HK2 (PCR array-labeled signal proteins of the insulin pathway); and CCND1, JUN, MYC, TCF7, and WISP1 (PCR array-labeled signal proteins of the Wnt pathway) doubled at day 14 when obvious cell osteogenic differentiation occurred. Phenotypically, in all the perturbation groups at day 14, ALP activity, OPN, and autophagy marker LC3-II expression were coincidently decreased. Consistently, no positive alizarin red staining or von Kossa staining was observed in the specimens from these perturbation groups at day 28. The results showed that when obvious cell differentiation occurred at day 14 on PCL + FA control groups, the inhibition of the hedgehog, insulin, and Wnt pathways significantly decreased DPSC osteogenic differentiation and mineralization. The osteogenic differentiation of DPSCs grown on FA-modified PCL scaffolds appeared to be positively modulated by the hedgehog, insulin, and Wnt signal pathways, which were coordinated with and/or mediated by the cell autophagy process.


Assuntos
Apatitas/farmacologia , Polpa Dentária/citologia , Proteínas Hedgehog/metabolismo , Insulina/metabolismo , Osteogênese/fisiologia , Poliésteres/farmacologia , Células-Tronco/fisiologia , Alicerces Teciduais , Via de Sinalização Wnt/fisiologia , Autofagia , Western Blotting , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Microscopia Eletrônica de Varredura , Nanofibras , Reação em Cadeia da Polimerase , Transdução de Sinais
11.
Int Endod J ; 50(4): 377-386, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27003335

RESUMO

AIM: To investigate the effect of simvastatin on lipopolysaccharide (LPS)-stimulated inflammatory cytokines, cell adhesion molecules and nuclear factor-κB (NF-κB) transcription factors in human dental pulp cells (HDPCs). METHODOLOGY: The effect of LPS and simvastatin on human dental pulp cell (HDPCs) viability was measured using a 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) assay. The expression of inflammatory cytokines and cell adhesion molecules was evaluated by reverse-transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. NF-κB transcription factors were evaluated by Western blot analysis. Statistical analysis was performed with analysis of variance (anova). RESULTS: The viability of cells exposed to different concentrations of E. coli LPS, P. gingivalis LPS and simvastatin was not significantly different compared with that of control cells (P > 0.05). LPS significantly increased interleukin (IL)-1ß (P < 0.05) and IL-6 mRNA expression (P < 0.05) and vascular cell adhesion molecule-1 (VCAM-1) (P < 0.05) and intercellular adhesion molecule-1 (ICAM-1) protein expression (P < 0.05) in HDPCs. Treatment with simvastatin significantly attenuated LPS-stimulated production of IL-1ß, IL-6, VCAM-1 and ICAM-1 (P < 0.05). Treatment with simvastatin decreased LPS-induced expression of p65 and phosphorylation of IκB and also significantly decreased the phosphorylation of p65 and IκB in the cytoplasm and the level of p65 in the nucleus (P < 0.05). CONCLUSIONS: Simvastatin has a suppressing effect on LPS-induced inflammatory cytokine, cell adhesion molecules and NF-κB transcription factors in HDPCs. Therefore, simvastatin might be a useful candidate as a pulp-capping agent in vital pulp therapy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Polpa Dentária/efeitos dos fármacos , Sinvastatina/farmacologia , Western Blotting , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Int Endod J ; 50(9): 860-874, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27770435

RESUMO

The aim of this scoping study was to evaluate the survival rate and nature of tissue formed inside root canals of human immature permanent teeth with necrotic pulps (NIPT) under root canal revascularization (RCR). The search was performed in SciVerse Scopus®, PubMed/MEDLINE, Web of Science®, BIREME and in the grey literature up to November 2015. The keywords were selected using MeSH terms and DECs. Two independent reviewers scrutinized the records obtained considering specific inclusion criteria. The included studies were evaluated in accordance with a modified Arksey and O' Malley's framework. From 375 studies that were evaluated, 75 were included. A total of 367 NIPT were submitted to RCR, from which only 21 needed further endodontic treatment. The weighted mean follow-up time was 17.6 months. The data were derived mainly from case reports (69%) or small case series (15%). NaOCl [0.5-6%] was applied as the disinfecting solution in almost all studies. Triple antibiotic paste was as effective as Ca(OH)2 as on intracanal medicament. De novo tissue was cementum and poorly mineralized bone positive to bone sialoprotein (BSP) but negative to dentine sialoprotein (DSP). Failures were associated mainly with reinfection of the root canal. The majority of included studies reported a significant increase in both root length and width. However, as most of these data came from case reports, they must be interpreted with care, as most were focused on treatment successes (not failures). Therefore, well-designed randomized controlled trials comparing RCR with available apexification treatments are needed to address this gap in the literature.


Assuntos
Cavidade Pulpar/irrigação sanguínea , Necrose da Polpa Dentária/terapia , Tratamento do Canal Radicular , Cavidade Pulpar/patologia , Cavidade Pulpar/fisiopatologia , Necrose da Polpa Dentária/fisiopatologia , Dentição Permanente , Humanos , Estimativa de Kaplan-Meier , Plasma Rico em Plaquetas , Regeneração
13.
J Dent Res ; 95(6): 650 ­ 656, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26961490

RESUMO

As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.

14.
Int Endod J ; 49(8): 755-63, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26198909

RESUMO

AIM: To detect cells expressing the stem cell marker ALDH1 (aldehyde dehydrogenase1) in the pulp of human permanent teeth and to investigate the expression of ALDH1 in isolated dental pulp cells. METHODOLOGY: Pulp tissue was collected and processed for immunohistochemistry to detect ALDH1-, STRO-1- and CD90-positive cells. In addition, cells were isolated and analysed by flow cytometry for ALDH1 activity and for the cell surface markers CD44, CD73, CD90, STRO-1 and CD45. Cells were also examined for multidifferentiation capacity. Within these cells, an ALDH1(+) cell subpopulation was selected and evaluated for multidifferentiation capacity. RESULTS: The immunohistochemistry analyses showed that ALDH1-, CD90- and STRO-1-positive cells were located mainly in the perivascular areas and nerve fibres of dental pulps. Cells on the fifth passage had high expression for CD44, CD73 and CD90, whereas moderate labelling was observed for STRO-1 and ALDH1 in flow cytometry analysis. On the same passages, cells were able to differentiate into osteogenic, adipogenic and chondrogenic lineages. The ALDH1(+) cell subpopulation also demonstrated multilineage differentiation ability. CONCLUSIONS: Dental pulp stem cells reside in the vicinity of blood vessels and nerve fibres, indicating the possible existence of more than one stem cell niche in dental pulps. Furthermore, ALDH1 was expressed by isolated dental pulp cells, which had mesenchymal stem cell characteristics. Thus, it can be suggested that ALDH1 may be used as a DPSC marker.


Assuntos
Polpa Dentária/citologia , Isoenzimas/metabolismo , Retinal Desidrogenase/metabolismo , Células-Tronco , Adolescente , Adulto , Família Aldeído Desidrogenase 1 , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Polpa Dentária/irrigação sanguínea , Polpa Dentária/metabolismo , Humanos , Dente Serotino , Antígenos Thy-1/metabolismo , Adulto Jovem
15.
Int Endod J ; 49(6): 543-50, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26101143

RESUMO

Stem cell-based therapy (SC-BT) is emerging as an alternative for endodontic therapies. The interaction between stem cells and scaffolds plays a crucial role in the generation of a 'friendly cell' microenvironment. The aim of this systematic review was to explore techniques applied to regenerate the pulp-dentine complex tissue using SC-BT. An electronic search into the SciVerse Scopus (SS), ISI Web Science (IWS) and Entrez PubMed (EP) using specific keywords was performed. Specific inclusion and exclusion criteria were predetermined. The search yielded papers, out of which full-text papers were included in the final analyses. Data extraction pooled the results in four main topics: (a) influence of the chemical properties of the scaffolds over cell behaviour; (b) influence of the physical characteristics of scaffolds over cell behaviour; (c) strategies applied to improve the stem cell/scaffold interface; and (d) influence of cue microenvironment on stem cell differentiation towards odontoblast-like cells and pulp-like tissue formation. The relationship between the scaffolds, the environment and the growth factors released from dentine are critical for de novo pulp tissue regeneration. The preconditioning of dentine walls with ethylenediaminetetraacetic acid (EDTA) was imperative for successful pulp-dentine complex regeneration. An analyses of the grouped results revealed that pulp regeneration was an attainable goal.


Assuntos
Polpa Dentária/crescimento & desenvolvimento , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Regeneração Tecidual Guiada/métodos , Humanos , Alicerces Teciduais
17.
Int Endod J ; 48(12): 1147-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25425048

RESUMO

AIM: To evaluate both the drug-release profile and the effects on human dental pulp stem cells' (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug delivery system for root canal disinfection prior to regenerative endodontics. METHODOLOGY: Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (nontoxic) and positive (toxic) controls, respectively. High-performance liquid chromatography (HPLC) was performed to investigate the amount of drug(s) released from the scaffolds. WST-1(®) proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD(®) assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. RESULTS: A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs' exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P < 0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. CONCLUSIONS: Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP).


Assuntos
Antibacterianos/administração & dosagem , Anti-Infecciosos/administração & dosagem , Ciprofloxacina/administração & dosagem , Polpa Dentária/citologia , Desinfecção/métodos , Sistemas de Liberação de Medicamentos , Metronidazol/administração & dosagem , Tratamento do Canal Radicular , Células-Tronco/efeitos dos fármacos , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Polidioxanona/química
18.
Int Endod J ; 48(2): 177-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24738842

RESUMO

AIM: To compare the mineralization inductive capacity of Biodentine and Bioaggregate with Mineral trioxide aggregate (MTA) and to investigate possible signaling pathways of mineralization in human dental pulp cells (HDPCs). METHODOLOGY: Viability of HDPCs in response to Biodentine, Bioaggregate, and MTA was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide. To investigate their potential to induce odontoblast differentiation, expression of dentine sialophosphoprotein (DSPP) and dentine matrix protein1 (DMP1) mRNA level was evaluated by RT-PCR. For the mineralized nodule assay, Alizarin red staining was performed. To determine the role of MAPK signaling in the odontoblastic differentiation of HDPCs, activated MAPKs were investigated by Western blot and the effect of MAPK inhibitor was examined by Alizarin red S staining. The results were statistically analysed using one-way anova and the Bonferroni test. RESULTS: The effects of MTA, Biodentine, and Bioaggregate on cell viability were similar. Biodentine and Bioaggregate enhanced DSPP and DMP1 mRNA expression compared to the control group, but to the same extent as MTA (P < 0.05). MTA, Biodentine, and Bioaggregate increased the area of calcified nodules compared to the control (P < 0.01). MTA, Biodentine, and Bioaggregate increased phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). MAPK inhibitors attenuated mineralized nodule formation, which was increased by MTA, Biodentine, and Bioaggregate, respectively (P < 0.01). CONCLUSION: Biodentine and Bioaggregate stimulated odontoblastic differentiation and mineralization nodule formation by activating the MAPK pathway as did MTA. This suggests that the new materials could be useful for regenerative endodontic procedures.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Hidróxido de Cálcio/farmacologia , Polpa Dentária/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hidroxiapatitas/farmacologia , Odontoblastos/efeitos dos fármacos , Óxidos/farmacologia , Silicatos/farmacologia , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Proteínas da Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Dente Molar , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialoglicoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Coloração e Rotulagem
19.
J Dent Res ; 93(12): 1222-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201917

RESUMO

Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.


Assuntos
Tratamento do Canal Radicular/métodos , Engenharia Tecidual/métodos , Animais , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Dentina/citologia , Dentina/fisiologia , Humanos , Desenho de Prótese , Regeneração/fisiologia , Células-Tronco/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
20.
J Dent Res ; 93(12): 1290-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25139361

RESUMO

In previous studies, fluorapatite (FA) crystal-coated surfaces have been shown to stimulate the differentiation and mineralization of human dental pulp stem cells (DPSCs) in two-dimensional cell culture. However, whether the FA surface can recapitulate these properties in three-dimensional culture is still unknown. This study examined the differences in behavior of human DPSCs cultured on electrospun polycaprolactone (PCL) NanoECM nanofibers with or without the FA crystals. Under near-physiologic conditions, the FA crystals were synthesized on the PCL nanofiber scaffolds. The FA crystals were evenly distributed on the scaffolds. DPSCs were cultured on the PCL+FA or the PCL scaffolds for up to 28 days. Scanning electron microscope images showed that DPSCs attached well to both scaffolds after the initial seeding. However, it appeared that more multicellular aggregates formed on the PCL+FA scaffolds. After 14 days, the cell proliferation on the PCL+FA was slower than that on the PCL-only scaffolds. Interestingly, even without any induction of mineralization, from day 7, the upregulation of several pro-osteogenic molecules (dmp1, dspp, runx2, ocn, spp1, col1a1) was detected in cells seeded on the PCL+FA scaffolds. A significant increase in alkaline phosphatase activity was also seen on FA-coated scaffolds compared with the PCL-only scaffolds at days 14 and 21. At the protein level, osteocalcin expression was induced only in the DPSCs on the PCL+FA surfaces at day 21 and then significantly enhanced at day 28. A similar pattern was observed in those specimens stained with Alizarin red and Von Kossa after 21 and 28 days. These data suggest that the incorporation of FA crystals within the three-dimensional PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human DPSCs. This FA-modified PCL nanofiber scaffold shows promising potential for future bone, dental, and orthopedic regenerative applications.


Assuntos
Apatitas/química , Calcificação Fisiológica/fisiologia , Polpa Dentária/citologia , Células-Tronco/fisiologia , Alicerces Teciduais/química , Fosfatase Alcalina/análise , Adesão Celular/fisiologia , Agregação Celular/fisiologia , Técnicas de Cultura de Células , Proliferação de Células , Microambiente Celular , Colágeno Tipo I/análise , Cadeia alfa 1 do Colágeno Tipo I , Subunidade alfa 1 de Fator de Ligação ao Core/análise , Cristalização , Polpa Dentária/fisiologia , Proteínas da Matriz Extracelular/análise , Humanos , Teste de Materiais , Nanofibras/química , Osteocalcina/análise , Osteogênese/fisiologia , Osteopontina/análise , Fosfoproteínas/análise , Poliésteres/química , Sialoglicoproteínas/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA