Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202813

RESUMO

Nowadays, the quality of natural products is an issue of great interest in our society due to the increase in adulteration cases in recent decades. Coffee, one of the most popular beverages worldwide, is a food product that is easily adulterated. To prevent fraudulent practices, it is necessary to develop feasible methodologies to authenticate and guarantee not only the coffee's origin but also its variety, as well as its roasting degree. In the present study, a C18 reversed-phase liquid chromatography (LC) technique coupled to high-resolution mass spectrometry (HRMS) was applied to address the characterization and classification of Arabica and Robusta coffee samples from different production regions using chemometrics. The proposed non-targeted LC-HRMS method using electrospray ionization in negative mode was applied to the analysis of 306 coffee samples belonging to different groups depending on the variety (Arabica and Robusta), the growing region (e.g., Ethiopia, Colombia, Nicaragua, Indonesia, India, Uganda, Brazil, Cambodia and Vietnam), and the roasting degree. Analytes were recovered with hot water as the extracting solvent (coffee brewing). The data obtained were considered the source of potential descriptors to be exploited for the characterization and classification of the samples using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). In addition, different adulteration cases, involving nearby production regions and different varieties, were evaluated by pairs (e.g., Vietnam Arabica-Vietnam Robusta, Vietnam Arabica-Cambodia and Vietnam Robusta-Cambodia). The coffee adulteration studies carried out with partial least squares (PLS) regression demonstrated the good capability of the proposed methodology to quantify adulterant levels down to 15%, accomplishing calibration and prediction errors below 2.7% and 11.6%, respectively.


Assuntos
Quimiometria , Café , Espectrometria de Massa com Cromatografia Líquida , Bebidas , Espectrometria de Massas
2.
Foods ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34945486

RESUMO

Tea is a widely consumed drink in the world which is susceptible to undergoing adulterations to reduce manufacturing costs and rise financial benefits. The development of simple analytical methodologies to assess tea authenticity, as well as to detect and quantify frauds, is an important matter considering the rise of adulteration issues in recent years. In the present study, untargeted HPLC-UV and HPLC-FLD fingerprinting methods were employed to characterize, classify, and authenticate tea extracts belonging to different varieties (red, green, black, oolong, and white teas) by partial least squares-discriminant analysis (PLS-DA), as well as to detect and quantify adulteration frauds when chicory was used as the adulterant by partial least squares (PLS) regression, to ensure the authenticity and integrity of foodstuffs. Overall, PLS-DA showed a good classification and grouping of the tea samples according to the tea variety and, except for some white tea extracts, perfectly discriminated from the chicory ones. One hundred percent classification rates for the PLS-DA calibration models were achieved, except for green and oolong tea when HPLC-FLD fingerprints were employed, which showed classification rates of 96.43% and 95.45%, respectively. Good predictions were also accomplished, also showing, in almost all the cases, a 100% classification rate for prediction, with the exception of white tea and oolong tea when HPLC-UV fingerprints were employed that exhibited a classification rate of 77.78% and 88.89%, respectively. Good PLS results for chicory adulteration detection and quantitation were also accomplished, with calibration, cross-validation, and external validation errors beneath 1.4%, 6.4%, and 3.7%, respectively. Acceptable prediction errors (below 21.7%) were also observed, except for white tea extracts that showed higher errors which were attributed to the low sample variability available.

3.
Foods ; 10(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921420

RESUMO

Coffee, one of the most popular drinks around the world, is also one of the beverages most susceptible of being adulterated. Untargeted high-performance liquid chromatography with ultraviolet and fluorescence detection (HPLC-UV-FLD) fingerprinting strategies in combination with chemometrics were employed for the authenticity assessment and fraud quantitation of adulterated coffees involving three different and common adulterants: chicory, barley, and flours. The methodologies were applied after a solid-liquid extraction procedure with a methanol:water 50:50 (v/v) solution as extracting solvent. Chromatographic fingerprints were obtained using a Kinetex® C18 reversed-phase column under gradient elution conditions using 0.1% formic acid aqueous solution and methanol as mobile phase components. The obtained coffee and adulterants extract HPLC-UV-FLD fingerprints were evaluated by partial least squares regression-discriminants analysis (PLS-DA) resulting to be excellent chemical descriptors for sample discrimination. One hundred percent classification rates for both PLS-DA calibration and prediction models were obtained. In addition, Arabica and Robusta coffee samples were adulterated with chicory, barley, and flours, and the obtained HPLC-UV-FLD fingerprints subjected to partial least squares (PLS) regression, demonstrating the feasibility of the proposed methodologies to assess coffee authenticity and to quantify adulteration levels (down to 15%), showing both calibration and prediction errors below 1.3% and 2.4%, respectively.

4.
J Sci Food Agric ; 101(1): 65-73, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32608518

RESUMO

BACKGROUND: Coffee is one of the most popular beverages around the world, consumed as an infusion of ground roasting coffee beans with a characteristic taste and flavor. Two main varieties, Arabica and Robusta, are produced worldwide. Furthermore, interest of consumers in quality attributes related to coffee production region and varieties is increasing. Thus, it is necessary to encourage the development of simple methodologies to authenticate and guarantee the coffee origin, variety and roasting degree, aiming to prevent fraudulent practices. RESULTS: C18 high-performance liquid chromatography with fluorescence detection (HPLC-FLD) fingerprints obtained after brewing coffees without any sample treatment other than filtration (i.e. considerably reducing sample manipulation) were employed as sample chemical descriptors for subsequent coffee characterization and classification by principal component analysis (PCA) and partial least squares regression-discriminant analysis (PLS-DA). PLS-DA showed good classification capabilities regarding coffee origin, variety and roasting degree when employing HPLC-FLD fingerprints, although overlapping occurred for some sample groups. However, the discrimination power increased when selecting HPLC-FLD fingerprinting segments richer in discriminant features, which were deduced from PLS-DA loading plots. In this case, excellent separation was observed and 100% classification rates for both PLS-DA calibrations and predictions were obtained (all samples were correctly classified within their corresponding groups). CONCLUSION: HPLC-FLD fingerprinting segments were3 found to be suitable chemical descriptors for discriminating the origin (country of production), variety (Arabica and Robusta) and roasting degree of coffee. Therefore, HPLC-FLD fingerprinting can be proposed as a feasible, simple and cheap methodology to address coffee authentication, especially for developing coffee production countries. © 2020 Society of Chemical Industry.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Coffea/química , Cromatografia Líquida de Alta Pressão/classificação , Cromatografia Líquida de Alta Pressão/instrumentação , Culinária , Análise Discriminante , Geografia , Temperatura Alta , Controle de Qualidade , Sementes/química
5.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604759

RESUMO

The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization and classification of turmeric and curry samples. The profiles corresponding to bioactive substances were obtained by TraceFinderTM software using accurate mass databases with 53 and 24 polyphenolic and curcuminoid related compounds, respectively. For that purpose, 21 turmeric and 9 curry samples commercially available were analyzed in triplicate by a simple liquid-solid extraction procedure using dimethyl sulfoxide as extracting solvent. The obtained results demonstrate that the proposed profiles were excellent chemical descriptors for sample characterization and classification by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving 100% classification rates. Curcuminoids and some specific phenolic acids such as trans-cinnamic, ferulic and sinapic acids, helped on the discrimination of turmeric samples; polyphenols, in general, were responsible for the curry sample distinction. Besides, the combination of both polyphenolic and curcuminoid profiles was necessary for the simultaneous characterization and classification of turmeric and curry samples. Discrimination among turmeric species such as Curcuma longa vs. Curcuma zedoaria, as well as among different Curcuma longa varieties (Alleppey, Madras and Erode) was also accomplished.


Assuntos
Curcuma/química , Diarileptanoides/isolamento & purificação , Polifenóis/isolamento & purificação , Especiarias/análise , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Diarileptanoides/química , Índia , Análise dos Mínimos Quadrados , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Análise de Componente Principal
6.
Foods ; 9(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213986

RESUMO

In this work, non-targeted approaches relying on HPLC-UV chromatographic fingerprints were evaluated to address coffee characterization, classification, and authentication by chemometrics. In general, high-performance liquid chromatography with ultraviolet detection (HPLC-UV) fingerprints were good chemical descriptors for the classification of coffee samples by partial least squares regression-discriminant analysis (PLS-DA) according to their country of origin, even for nearby countries such as Vietnam and Cambodia. Good classification was also observed according to the coffee variety (Arabica vs. Robusta) and the coffee roasting degree. Sample classification rates higher than 89.3% and 91.7% were obtained in all the evaluated cases for the PLS-DA calibrations and predictions, respectively. Besides, the coffee adulteration studies carried out by partial least squares regression (PLSR), and based on coffees adulterated with other production regions or variety, demonstrated the good capability of the proposed methodology for the detection and quantitation of the adulterant levels down to 15%. Calibration, cross-validation, and prediction errors below 2.9%, 6.5%, and 8.9%, respectively, were obtained for most of the evaluated cases.

7.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901822

RESUMO

Recently, the authenticity of food products has become a great social concern. Considering the complexity of the food chain and that many players are involved between production and consumption; food adulteration practices are rising as it is easy to conduct fraud without being detected. This is the case for nut fruit processed products, such as almond flours, that can be adulterated with cheaper nuts (hazelnuts or peanuts), giving rise to not only economic fraud but also important effects on human health. Non-targeted HPLC-UV chromatographic fingerprints were evaluated as chemical descriptors to achieve nut sample characterization and classification using multivariate chemometric methods. Nut samples were extracted by sonication and centrifugation, and defatted with hexane; extracting procedure and conditions were optimized to maximize the generation of enough discriminant features. The obtained HPLC-UV chromatographic fingerprints were then analyzed by means of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to carry out the classification of nut samples. The proposed methodology allowed the classification of samples not only according to the type of nut but also based on the nut thermal treatment employed (natural, fried or toasted products).

8.
J Sci Food Agric ; 99(6): 2966-2973, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30478939

RESUMO

BACKGROUND: Rosemary forms an arbuscular mycorrhizal (AM) symbiosis with a group of soilborne fungi belonging to the phylum Glomeromycota, which can modify the plant metabolome responsible for the antioxidant capacity and other health beneficial properties of rosemary. RESULTS: The effect of inoculating rosemary plants with an AM fungus on their growth via their polyphenolic fingerprinting was evaluated after analyzing leaf extracts from non-inoculated and inoculated rosemary plants by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Plant growth parameters indicated that mycorrhizal inoculation significantly increased plant height and biomass. Chemical modifications in the plant polyphenolic profile distribution were found after a principal components analysis (PCA) loading plots study. Four compounds hosting strong antioxidant properties - ferulic acid, asiatic acid, carnosol, and vanillin - were related to mycorrhizal rosemary plants while caffeic and chlorogenic acids had a higher influence on non-mycorrhizal plants. CONCLUSION: Mycorrhization was found to stimulate growth to obtain a higher biomass of plant leaves in a short time, avoiding chemical fertilization, while analytical results demonstrate that there is an alteration in the distribution of polyphenols in plants colonized by the symbiotic fungus, which can be related to an improvement in nutritional properties with future industrial significance. © 2018 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/fisiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Folhas de Planta/química , Polifenóis/química , Rosmarinus/química , Folhas de Planta/metabolismo , Raízes de Plantas/microbiologia , Polifenóis/metabolismo , Rosmarinus/crescimento & desenvolvimento , Rosmarinus/microbiologia , Rosmarinus/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA