Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 149(8): 988-97, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17088865

RESUMO

BACKGROUND AND PURPOSE: 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are frequently used lipid-lowering drugs. Moreover, they exert pleiotropic effects on cellular stress responses and death. Here, we analysed whether lovastatin affects the sensitivity of primary human endothelial cells (HUVEC) to the anticancer drug doxorubicin. EXPERIMENTAL APPROACH: We investigated whether pretreatment of HUVEC with low dose of lovastatin influences the cellular sensitivity to doxorubicin. To this end, cell viability, proliferation and apoptosis as well as DNA damage-triggered stress response were analysed. KEY RESULTS: Lovastatin reduced the cytotoxic potency of doxorubicin in HUVEC. Lovastatin attenuated the doxorubicin-induced increase in p53 as well as activation of checkpoint kinase (Chk-1) and stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK). Acquired doxorubicin resistance was independent of alterations in doxorubicin efflux and cell cycle progression. Also, doxorubicin-triggered production of reactive oxygen species (ROS) and formation of oxidative DNA lesions remained unaffected by lovastatin. However, lovastatin impaired DNA strand break formation induced by doxorubicin. Notably, lovastatin also conferred cross-resistance to the cytotoxic and genotoxic effects of etoposide, indicating that lovastatin shields topoisomerase II against poisons. CONCLUSIONS AND IMPLICATIONS: Based on these data, we suggest that lovastatin-mediated resistance to topoisomerase II inhibitors is due to a reduction in DNA damage and, hence, it attenuates stress responses leading to cell death that are triggered by DNA damage. Therefore, lovastatin might be useful clinically for alleviating side-effects of anticancer therapies that include topoisomerase II inhibitors.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Antimutagênicos , Antineoplásicos Fitogênicos/antagonistas & inibidores , Antineoplásicos Fitogênicos/toxicidade , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Células Endoteliais/efeitos dos fármacos , Etoposídeo/antagonistas & inibidores , Etoposídeo/toxicidade , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Antibióticos Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/metabolismo , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidores da Topoisomerase II
2.
Horm Res ; 65(6): 300-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16641553

RESUMO

The term 'uncoupling protein' was originally used for the mitochondrial membrane protein UCP1, which is uniquely present in mitochondria of brown adipocytes, thermogenic cells that regulate body temperature in small rodents, hibernators and mammalian newborns. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP-synthase resulting in a futile proton cycling and dissipation of oxidation energy as heat. Recent identification of new homologues to UCP1 expressed in brown and white adipose tissue, muscle, brain and other tissues together with the hypothesis that these novel uncoupling proteins (UCPs) may regulate thermogenesis and/or fatty acid metabolism and furthermore may protect against free radical oxygen species production have generated considerable optimism for rapid advances in the identification of new targets for pharmacological management of complex pathological syndromes such as obesity, type 2 diabetes or chronic inflammatory diseases. However, since the physiological and biochemical roles of the novel UCPs are not yet clear, the main challenge today consists first of all in providing mechanistic explanation for their functions in cellular physiology. This lively awaited information may be the basis for potential pharmacological targeting of the UCPs in future.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/fisiologia , Apoptose/fisiologia , Aterosclerose/fisiopatologia , Peso Corporal/fisiologia , Respiração Celular/fisiologia , Senescência Celular/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/fisiologia , Humanos , Inflamação/fisiopatologia , Canais Iônicos , Processos Neoplásicos , Espécies Reativas de Oxigênio/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
3.
Arch Microbiol ; 173(4): 233-44, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10816041

RESUMO

The sulfide-dependent reduction of exogenous ubiquinone by membranes of the hyperthermophilic chemotrophic bacterium Aquifex aeolicus (VF5), the sulfide-dependent consumption of oxygen and the reduction of cytochromes by sulfide in membranes were studied. Sulfide reduced decyl-ubiquinone with a maximal rate of up to 3.5 micromol (mg protein)(-1) min(-1) at 20 degrees C. Rates of 220 nmol (mg protein)(-1) min(-1)] for the sulfide-dependent consumption of oxygen and 480 nmol (mg protein)(-1) min(-1) for the oxidation of sulfide at 20 C were estimated. The reactions were sensitive towards 2-n-nonyl-4-hydroxyquinoline-N-oxide, but insensitive towards cyanide. Both reduction of decyl-ubiquinone and consumption of oxygen by sulfide rapidly increased with increasing temperature. For the sulfide-dependent respiratory activity, a sulfide-to-oxygen ratio of 2.3+/-0.2 was measured. This indicates that sulfide was oxidized to the level of zero-valent sulfur. Reduction of cytochromes by sulfide was monitored with an LED-array spectrophotometer. Reduction of cytochrome b was stimulated by 2-n-nonyl-4-hydroxyquinoline-N-oxide in the presence of excess sulfide under oxic conditions. This "oxidant-induced reduction" of cytochrome b suggests that electron transport from sulfide to oxygen in A. aeolicus employs the cytochrome bc complex via the quinone pool. Comparison of the amino acid sequence with the sequence of the sulfide:quinone oxidoreductase from Rhodobacter capsulatus and of the flavocytochrome c from Allochromatium vinosum revealed that the sulfide:quinone oxidoreductase from A. aeolicus belongs to the glutathione reductase family of flavoproteins.


Assuntos
Bactérias/enzimologia , Membrana Celular/enzimologia , Quinona Redutases/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Dados de Sequência Molecular , Oxirredução , Consumo de Oxigênio , Quinona Redutases/química , Quinona Redutases/genética , Análise de Sequência de DNA , Sulfetos/metabolismo , Temperatura , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA