Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
EXCLI J ; 23: 967-990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253528

RESUMO

Smoking is the most significant and modifiable risk factor for a range of conditions, including cancer, cardiovascular and respiratory diseases. Furthermore, it significantly reduces bone mass and increases the risk of fragility fractures due to its detrimental effects on bone metabolism and regeneration. Moreover, smoking is a known cause of chronic systemic inflammation, leading to an imbalance of cytokines. Comprehending the pathological mechanisms that underlie cytokine production and its impact on post-surgical healing is essential to prevent post-surgical complications. The present study recruited a total of 1144 patients, including 897 patients, among them non-smokers (N = 413), current smokers (N = 201) and ex-smokers (N = 283). Human proteome profiler arrays were used to screen for smoking-dependent differences in the serum cytokine and protein profiles, after matching samples for age, gender, body mass index (BMI), alcohol use, and diabetes risk. Cytokines and immune checkpoint proteins such as CD28, B7-1, MIG, TGFß2 and IL-1α/ß were quantified by ELISA. Our study demonstrates a comprehensive understanding of the relationship between smoking, the development of complications, the systemic immune inflammation index (SII) and cytokine/protein levels. We found that a comparison of non-smokers, former smokers, and active smokers in our study cohort did not exhibit significantly altered cytokine and protein serum levels although other studies reported differences between smokers and non-smokers. We were unable to identify single blood circulating markers that could predict complications in smokers after trauma. However, we found the ratio of women to men to be inverted between non-smokers and active smokers resulting in a ratio of 0.62 in smokers. Furthermore, we demonstrate a higher complication rate, longer hospitalizations and elevated SII values among smokers, indicating an involvement of the immune system. See also the graphical abstract(Fig. 1).

2.
BMC Musculoskelet Disord ; 25(1): 677, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210389

RESUMO

BACKGROUND: Around 10% of fractures lead to complications. With increasing fracture incidences in recent years, this poses a serious burden on the healthcare system, with increasing costs for treatment. In the present study, we aimed to identify potential 'new' blood markers to predict the development of post-surgical complications in trauma patients following a fracture. METHODS: A total of 292 trauma patients with a complete three-month follow-up were included in this cohort study. Blood samples were obtained from 244 of these patients. Two complication groups were distinguished based on the Clavien-Dindo (CD) classification: CD grade I and CD grade III groups were compared to the controls (CD 0). The Mann-Whitney U test was used to compare the complication groups to the control group. RESULTS: Analysis of the patients' data revealed that risk factors are dependent on sex. Both, males and females who developed a CD III complication showed elevated blood levels of B7-1 (p = 0.015 and p = 0.018, respectively) and PlGF-1 (p = 0.009 and p = 0.031, respectively), with B7-1 demonstrating greater sensitivity (B7-1: 0.706 (male) and 0.692 (female), PlGF-1: 0.647 (male) and 0.615 (female)). Further analysis of the questionnaires and medical data revealed the importance of additional risk factors. For males (CD 0: 133; CD I: 12; CD III: 18 patients) alcohol consumption was significantly increased for CD I and CD III compared to control with p = 0.009 and p = 0.007, respectively. For females (CD 0: 107; CD I: 10; CD III: 12 patients) a significantly increased average BMI [kg/m2] from 25.5 to 29.7 with CD III was observed, as well as an elevation from one to three comorbidities (p = 0.003). CONCLUSIONS: These two potential new blood markers hold promise for predicting complication development in trauma patients. Nevertheless, further studies are necessary to evaluate the diagnostic utility of B7-1 and PlGF-1 in predicting complications in trauma patients and consider sex differences before their possible use as routine clinical screening tools.


Assuntos
Biomarcadores , Fraturas Ósseas , Fator de Crescimento Placentário , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Fraturas Ósseas/sangue , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/etiologia , Fator de Crescimento Placentário/sangue , Fatores de Risco , Estudos de Coortes , Idoso , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Seguimentos
3.
Arch Toxicol ; 98(10): 3365-3380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971901

RESUMO

Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.


Assuntos
Atorvastatina , Dexametasona , Necrose da Cabeça do Fêmur , Glucocorticoides , Células-Tronco Mesenquimais , Osteogênese , Proteína Wnt-5a , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Atorvastatina/farmacologia , Animais , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Dexametasona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Masculino , Diferenciação Celular/efeitos dos fármacos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Ratos Sprague-Dawley , Células Cultivadas , Adipogenia/efeitos dos fármacos , Ratos
4.
Mech Ageing Dev ; 220: 111953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834155

RESUMO

Muscle aging contributed to morbidity and mortality in the elderly adults by leading to severe outcomes such as frailty, falls and fractures. Post-transcriptional regulation especially competing endogenous RNA (ceRNA) mechanism may modulate the process of skeletal muscle aging. RNA-seq was performed in quadriceps of 6-month-old (adult) and 22-month-old (aged) male mice to identify differentially expressed ncRNAs and mRNAs and further construct ceRNA networks. Decreased quadriceps-body weight ratio and muscle fiber cross-sectional area as well as histological characteristics of aging were observed in the aged mice. Besides, there were higher expressions of atrogin-1 and MuRF-1 and lower expression of Myog, Myf4 and Myod1 in the quadriceps of aged mice relative to that of adult mice. The expression of 85 lncRNAs, 52 circRNAs, 10 miRNAs and 277 mRNAs were significantly dysregulated in quadriceps between the two groups, among which two ceRNA networks lncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were constructed. Level of triglycerides and expression of PPARγ, C/EBPα, FASN and leptin were elevated and the expression of adiponectin was reduced in quadriceps of aged mice compared with that of adult mice. LncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were possibly associated with the adipogenesis and fat accumulation in skeletal muscle of age male mice.


Assuntos
Envelhecimento , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Redes Reguladoras de Genes , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Circular/metabolismo , RNA Circular/genética , Músculo Quadríceps/metabolismo , RNA Endógeno Competitivo
5.
J Nanobiotechnology ; 22(1): 276, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778385

RESUMO

With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.


Assuntos
Proteínas Quinases Ativadas por AMP , Dexametasona , Atrofia Muscular , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Dexametasona/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/induzido quimicamente , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química , Exossomos/metabolismo , Exossomos/efeitos dos fármacos
6.
Sci Rep ; 14(1): 10345, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710795

RESUMO

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Osteoblastos , Humanos , Osteoblastos/metabolismo , Osteoblastos/citologia , Microambiente Celular , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Osteogênese , Agregação Celular , Células Cultivadas
7.
Sci Rep ; 14(1): 7335, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538623

RESUMO

Hereditary spastic paraplegia type 5 (SPG5) is an autosomal recessively inherited movement disorder characterized by progressive spastic gait disturbance and afferent ataxia. SPG5 is caused by bi-allelic loss of function mutations in CYP7B1 resulting in accumulation of the oxysterols 25-hydroxycholesterol and 27-hydroxycholesterol in serum and cerebrospinal fluid of SPG5 patients. An effect of 27- hydroxycholesterol via the estrogen and liver X receptors was previously shown on bone homeostasis. This study analyzed bone homeostasis and osteopenia in 14 SPG5 patients as a non-motor feature leading to a potential increased risk for bone fractures. T-Scores in CT bone density measurements were reduced, indicating osteopenia in SPG5 patients. Further, we analyzed various metabolites of bone homeostasis by ELISA in serum samples of these patients. We identified a lack of vitamin D3 metabolites (Calcidiol and Calcitriol), an increase in Sclerostin as a bone formation/mineralization inhibiting factor, and a decrease in cross-linked N-telopeptide of type I collagen (NTX), a marker indicating reduced bone resorption. As statin treatment has been found to lower oxysterol levels, we evaluated its effect in samples of the STOP-SPG5 trial and found atorvastatin to normalize the increased sclerostin levels. In summary, our study identified osteopenia as a non-motor feature in SPG5 and suggests the need for vitamin D3 substitution in SPG5 patients. Sclerostin may be considered a therapeutic target and biomarker in upcoming therapeutical trials in SPG5.


Assuntos
Oxisteróis , Paraplegia Espástica Hereditária , Humanos , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia , Homeostase , Vitamina D/uso terapêutico
8.
EXCLI J ; 23: 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357095

RESUMO

Early and reliable detection of infection is vital for successful treatment. Serum markers such as C-reactive protein (CRP) and procalcitonin (PCT) are known to increase with a time lag. Azurocidin 1 (AZU1) has emerged as a promising marker for septic patients, but its diagnostic value in orthopedic and trauma patients remains unexplored. Between July 2020 and August 2023, all patients necessitating inpatient treatment for periprosthetic joint infection (PJI), peri-implant infection (II), soft tissue infection, chronic osteomyelitis, septic arthrodesis, bone non-union with and without infection were enrolled. Patients undergoing elective total joint arthroplasty (TJA) served as the control group. Blood samples were collected and analyzed for CRP, white blood cell count (WBC), PCT, and AZU1. Based on the inclusion and exclusion criteria 222 patients were included in the study (trauma = 38, soft tissue infection = 75, TJA = 33, PJI/II = 39, others = 37). While sensitivity and specificity were comparably high for AZU1 (0.734/0.833), CRP and PCT had higher specificity (0.542/1 and 0.431/1, respectively), and WBC a slightly higher sensitivity (0.814/0.455) for septic conditions. Taken together, the area under the curve (AUC) showed the highest accuracy for AZU1 (0.790), followed by CRP (0.776), WBC (0.641), and PCT (0.656). The Youden-Index was 0.57 for AZU1, 0.54 for CRP, 0.27 for WBC, and 0.43 for PCT. Elevated AZU1 levels effectively distinguished patients with a healthy condition from those suffering from infection. However, there is evidence suggesting that trauma may influence the release of AZU1. Additional research is needed to validate the diagnostic value of this new biomarker and further explore its potential clinical applications.

9.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255829

RESUMO

Fracture healing in the aged is associated with a reduced healing capacity, which often results in delayed healing or non-union formation. Many factors may contribute to this deterioration of bone regeneration, including a reduced 'angiogenic trauma response'. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in preclinical studies. Therefore, we herein analyzed in a stable closed femoral fracture model whether this compound also promotes fracture healing in aged mice. Forty-two aged CD-1 mice (age: 16-18 months) were daily treated with 30 mg/kg body weight cilostazol (n = 21) or vehicle (control, n = 21) by oral gavage. At 2 and 5 weeks after fracture, the femora were analyzed by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry, and Western blotting. These analyses revealed a significantly increased bending stiffness at 2 weeks (2.2 ± 0.4 vs. 4.3 ± 0.7 N/mm) and an enhanced bone formation at 5 weeks (4.4 ± 0.7 vs. 9.1 ± 0.7 mm3) in cilostazol-treated mice when compared to controls. This was associated with a higher number of newly formed CD31-positive microvessels (3.3 ± 0.9 vs. 5.5 ± 0.7 microvessels/HPF) as well as an elevated expression of phosphoinositide-3-kinase (PI3K) (3.6 ± 0.8 vs. 17.4 ± 5.5-pixel intensity × 104) and runt-related transcription factor (RUNX)2 (6.4 ± 1.2 vs. 18.2 ± 2.7-pixel intensity × 104) within the callus tissue. These findings indicate that cilostazol accelerates fracture healing in aged mice by stimulating angiogenesis and the expression of PI3K and RUNX2. Hence, cilostazol may represent a promising compound to promote bone regeneration in geriatric patients.


Assuntos
Fraturas do Fêmur , Fosfatidilinositol 3-Quinase , Animais , Feminino , Masculino , Camundongos , Angiogênese , Cilostazol/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Consolidação da Fratura , Fosfatidilinositol 3-Quinases , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 3/uso terapêutico , Microtomografia por Raio-X
10.
J Am Med Dir Assoc ; 25(3): 431-438.e15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37660722

RESUMO

OBJECTIVES: Physical activity (PA) and telomeres both contribute to healthy aging and longevity. To investigate the optimal dosage of various PA for longevity and the role of telomere length in PA and mortality. DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: A total of 333,865 adults (mean age of 56 years) from the UK Biobank were analyzed. METHODS: Walking, moderate PA (MPA), and vigorous PA (VPA) were self-reported via questionnaire, and leukocyte telomere length (LTL) was measured. Cox proportional hazards regression was used to predict all-cause mortality risk. A flexible parametric Royston-Parmar survival model was used to estimate life expectancy. RESULTS: During a median follow-up of 13.8 years, 19,789 deaths were recorded. Compared with the no-walking group, 90 to 720 minutes/week of walking was similarly associated with 27% to 31% of lower mortality and about 6 years of additional life expectancy. We observed nearly major benefits for mortality and life expectancy among those meeting the PA guidelines [151-300 minutes/wk for MPA: hazard ratio (HR) 0.80, 95% CI 0.75-0.85, 3.40-3.42 additional life years; 76-150 minutes/wk for VPA: HR 0.78, 95% CI 0.75-0.82, 2.61 years (2.33-2.89)] vs the no-PA group. Similar benefits were also observed at 76-150 and 301-375 minutes/wk of MPA (18%-19% lower mortality, 3.20-3.42 gained years) or 151-300 minutes/wk of VPA (20%-26% lower mortality, 2.41-2.61 gained years). The associations between MPA, VPA, and mortality risk were slightly mediated by LTL (≈1% mediation proportion, both P < .001). CONCLUSIONS AND IMPLICATIONS: Our study suggests a more flexible range of PA than the current PA guidelines, which could gain similar benefits and is easier to achieve: 90 to 720 minutes/wk of walking, 75 to 375 minutes/wk of MPA, and 75 to 300 minutes/wk of VPA. Telomeres might be a potential mechanism by which PA promotes longevity.


Assuntos
Exercício Físico , Expectativa de Vida , Adulto , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Longevidade , Telômero
11.
Biomater Adv ; 157: 213714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096647

RESUMO

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Assuntos
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
12.
Biomedicines ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137522

RESUMO

Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.

13.
J Funct Biomater ; 14(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37998109

RESUMO

Extracellular vesicles (EVs) are nano-sized vehicles secreted by all live cells to establish communication with adjacent cells. In recent years, mammalian EVs (MEVs) have been widely investigated for their therapeutic implications in human disease conditions. As the understanding of MEV composition and nature is advancing, scientists are constantly exploring alternatives for EV production with similar therapeutic potential. Plant-derived exosome-like nanovesicles (PDEVs) may be a better substitute for MEVs because of their widespread sources, cost-effectiveness, and ease of access. Cissus quadrangularis (CQ), known as "bone setter or Hadjod", is a perennial plant utilized for its osteogenic potential. Its crude powder extract formulations are widely used as tablets and syrups. The present work elucidates the isolation of exosome-like nanovesicles (henceforth exosomes) from the culture supernatants of an in vitro cultured callus tissue derived from CQ. The physical and biological properties of the exosomes were successfully investigated using different characterization techniques. The therapeutic potential of the CQ exosomes was found to ameliorate the wound scratch injury and oxidative stress conditions in human-derived mesenchymal stem cells (hMSCs) and the pre-osteoblast (MC3T3) cell line. These exosomes also induced the proliferation and differentiation of hMSCs, as observed by alkaline phosphatase activity. These findings may serve as a proof of concept for further investigating the CQ exosomes as a nanocarrier for drug molecules in various therapeutic bone applications.

14.
Acta Dermatovenerol Croat ; 31(2): 64-71, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38006365

RESUMO

BACKGROUND: This study examined the effects of irradiation with blue light on HaCaT keratinocytes. As irradiation with blue light is known to be antimicrobial, it offers a promising alternative therapy for contaminated wounds. There is evidence that red light promotes wound healing, but the potential benefits of irradiation with blue light have not yet been adequately investigated. METHODS: The rate of wound closure in sterile and contaminated cells was measured using an in vitro scratch assay wound-healing model. Additionally, cell viability after treatment was determined using a Sulforhodamine B (SRB) assay. RESULTS: In both the sterile and contaminated groups, treated cells showed delayed wound closure when compared with cells not irradiated with blue light. Additionally, treatment with blue light resulted in poorer viability in the treatment groups. CONCLUSION: Although irradiation with blue light may offer a promising alternative therapy for reducing bacterial colonization, our data indicate that re-epithelization may be negatively influenced by blue light. Further research is needed to clarify possible wound healing applications.


Assuntos
Queratinócitos , Terapia com Luz de Baixa Intensidade , Humanos , Cicatrização/efeitos da radiação , Luz , Terapia com Luz de Baixa Intensidade/métodos
15.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834077

RESUMO

Fracture-healing is a highly complex and timely orchestrated process. Non-healing fractures are still a major clinical problem and treatment remains difficult. A 16 Hz extremely low-frequency pulsed electromagnetic field (ELF-PEMF) was identified as non-invasive adjunct therapy supporting bone-healing by inducing reactive oxygen species (ROS) and Ca2+-influx. However, ROS and Ca2+-influx may stimulate neutrophils, the first cells arriving at the wounded site, to excessively form neutrophil extracellular traps (NETs), which negatively affects the healing process. Thus, this study aimed to evaluate the effect of this 16 Hz ELF-PEMF on NET formation. Neutrophils were isolated from healthy volunteers and exposed to different NET-stimuli and the 16 Hz ELF-PEMF. NETs were quantified using Sytox Green Assay and immunofluorescence, Ca2+-influx and ROS with fluorescence probes. In contrast to mesenchymal cells, ELF-PEMF exposure did not induce ROS and Ca2+-influx in neutrophils. ELF-PEMF exposure did not result in basal or enhanced PMA-induced NET formation but did reduce the amount of DNA released. Similarly, NET formation induced by LPS and H2O2 was reduced through exposure to ELF-PEMF. As ELF-PEMF exposure did not induce NET release or negatively affect neutrophils, the ELF-PEMF exposure can be started immediately after fracture treatment.


Assuntos
Campos Eletromagnéticos , Peróxido de Hidrogênio , Humanos , Espécies Reativas de Oxigênio , Campos Eletromagnéticos/efeitos adversos , Consolidação da Fratura
16.
Cell J ; 25(10): 738-740, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865882

RESUMO

"Theory of Forms" implies that a genuine version of creatures exists beyond the shapes in this world. Stem cell
technology has adopted developmental cues to mimic real life. However, the functionality of the lab-made cells is far
from primary ones. Perhaps it is time to switch from analytical to systematic perspective in stem cell science. This
may be the way to define new horizons based on the systematic perspective and convergence of science in stem cell
biology, bridging the current gap between the shadows of real knowledge in current research and reality in future.

17.
Cells ; 12(16)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626905

RESUMO

Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-ß), which regulates not only inflammation and extracellular matrix formation but also revascularization. This present work aimed at characterizing wound tissues obtained from acute and chronic wounds regarding angiogenesis, inflammation, as well as ECM formation and degradation, to identify common disturbances in the healing process. Serum and wound tissues from 38 patients (N = 20 acute and N = 18 chronic wounds) were analyzed. The patients' sera suggested a shift from VEGF/VEGFR to ANGPT/TIE2 signaling in the chronic wounds. However, this shift was not confirmed in the wound tissues. Instead, the chronic wound tissues showed increased levels of MMP9, a known activator of TGF-ß. However, regulation of TGF-ß target genes, such as CTGF, COL1A1, or IL-6, was absent in the chronic wounds. In wound tissues, all three TGF-ß isoforms were expressed with increased levels of TGF-ß1 and TGF-ß3 and a reporter assay confirmed that the expressed TGF-ß was activated. However, Western blots and immunostaining showed decreased canonical TGF-ß signaling in the respective chronic wound tissues, suggesting the presence of a TGF-ß inhibitor. As a potential regulatory mechanism, the TGF-ß proteome profiler array suggested elevated levels of the TGF-ß pseudo-receptor BAMBI. Also, tissue expression of BAMBI was significantly increased not only in chronic wounds (10.6-fold) but also in acute wounds that had become chronic (9.5-fold). In summary, our data indicate a possible regulatory role of BAMBI in the development of chronic wounds. The available few in vivo studies support our findings by postulating a therapeutic potential of BAMBI for controlling scar formation.


Assuntos
Fator de Crescimento Transformador beta3 , Fator de Crescimento Transformador beta , Humanos , Bioensaio , Western Blotting , Inflamação , Proteínas de Membrana
18.
Biology (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37626968

RESUMO

Diabetes is a worldwide evolving disease with many associated complications, one of which is delayed or impaired wound healing. Appropriate wound healing strongly relies on the inflammatory reaction directly after injury, which is often altered in diabetic wound healing. After an injury, neutrophils are the first cells to enter the wound site. They have a special defense mechanism, neutrophil extracellular traps (NETs), consisting of released DNA coated with antimicrobial proteins and histones. Despite being a powerful weapon against pathogens, NETs were shown to contribute to impaired wound healing in diabetic mice and are associated with amputations in diabetic foot ulcer patients. The anti-diabetic drugs metformin and liraglutide have already been shown to regulate NET formation. In this study, the effect of insulin was investigated. NET formation after stimulation with PMA (phorbol myristate acetate), LPS (lipopolysaccharide), or calcium ionophore (CI) in the presence/absence of insulin was analyzed. Insulin led to a robust delay of LPS- and PMA-induced NET formation but had no effect on CI-induced NET formation. Mechanistically, insulin induced reactive oxygen species, phosphorylated p38, and ERK, but reduced citrullination of histone H3. Instead, bacterial killing was induced. Insulin might therefore be a new tool for the regulation of NET formation during diabetic wound healing, either in a systemic or topical application.

19.
J Nanobiotechnology ; 21(1): 304, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644475

RESUMO

Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.


Assuntos
Vesículas Extracelulares , Leite Humano , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas 70-kDa , Músculos , Serina-Treonina Quinases TOR , Desempenho Físico Funcional , Aminoácidos , Transdução de Sinais
20.
Foods ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569229

RESUMO

Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA