Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Microbiol ; 14: 1190650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588884

RESUMO

Exponential increase in photovoltaic installations arouses concerns regarding the impacts of large-scale solar power plants on dryland ecosystems. While the effects of photovoltaic panels on soil moisture content and plant biomass in arid ecosystems have been recognized, little is known about their influence on soil microbial communities. Here, we employed a combination of quantitative PCR, high-throughput sequencing, and soil property analysis to investigate the responses of soil microbial communities to solar panel installation. We also report on the responses of plant communities within the same solar farm. Our findings showed that soil microbial communities responded differently to the shading and precipitation-alternation effects of the photovoltaic panels in an arid ecosystem. By redirecting rainwater to the lower side, photovoltaic panels stimulated vegetation biomass and soil total organic carbon content in the middle and in front of the panels, positively contributing to carbon storage. The shade provided by the panels promoted the co-occurrence of soil microbes but inhibited the abundance of 16S rRNA gene in the soil. Increase in precipitation reduced 18S rRNA gene abundance, whereas decrease in precipitation led to decline in plant aboveground biomass, soil prokaryotic community alpha diversity, and dehydrogenase activity under the panels. These findings highlight the crucial role of precipitation in maintaining plant and soil microbial diversities in dryland ecosystems and are essential for estimating the potential risks of large-scale solar power plants on local and global climate change in the long term.

2.
J Plant Physiol ; 285: 153995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37163868

RESUMO

Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and protect plants from pathogens, which contributes to sustainable agricultural development. Several studies have reported their beneficial characteristics in facilitating plant growth and development and enhancing plant stress resistance through different mechanisms. However, there is still a challenge to study the molecular mechanism of plant response to PGPR. We integrated the transcriptome and metabolome of Arabidopsis thaliana (Arabidopsis) to understand its responses to the inoculation with an isolated PGPR strain (BT22) of Bacillus megaterium. Fresh shoot weight, dry shoot weight and leaf number of Arabidopsis were increased by BT22 treatment, showing a positive growth-promoting effect. According multi-omics analysis, 878 differentially expressed genes (296 up-regulated, 582 down-regulated) and 139 differentially expressed metabolites (66 up-regulated, 73 down-regulated) response to BT22 inoculation. GO enrichment results indicate that the up-regulated genes mainly enriched in the regulation of growth and auxin response pathways. In contrast, the down-regulated genes mainly enriched in wounding response, jasmonic acid and ethylene pathways. BT22 inoculation regulated plant hormone signal transduction of Arabidopsis, including auxin and cytokinin response genes AUX/IAA, SAUR, and A-ARR related to cell enlargement and cell division. The contents of nine flavonoids and seven phenylpropanoid metabolites were increased, which help to induce systemic resistance in plants. These results suggest that BT22 promoted Arabidopsis growth by regulating plant hormone homeostasis and inducing metabolome reprogramming.


Assuntos
Arabidopsis , Bacillus megaterium , Arabidopsis/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Ácidos Indolacéticos/metabolismo , Metaboloma
3.
Sci Total Environ ; 837: 155573, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504392

RESUMO

Excessive nutrient inputs imperil the stability of forest ecosystems via modifying the interactions among soil properties, microbes, and plants, particularly in forests composed of cash crops that are under intensive disturbances of agricultural activities, such as Torreya grandis. Understanding the potential drivers of soil microbial community helps scientists develop effective strategies for balancing the protection and productivity of the ancient Torreya forest. Here, we assayed the link between plant and soil parameters and prokaryote communities in bulk soil and T. grandis rhizosphere in 900-year-old stands by detecting plant and soil properties in two independent sites in southeastern China. Our results showed no apparent influence of stand age on the compositions of prokaryote communities in bulk soil and T. grandis rhizosphere. In contrast, soil abiotic factors (i.e., soil pH) overwhelm plant characteristics (i.e., height, plant tissue carbon, nitrogen, and phosphorus content) and contribute most to the shift in prokaryote communities in bulk soil and T. grandis rhizosphere. Soil pH leads to an increase in microbiota alpha diversity in both compartments. With the help of a random forest, we found a critical transition point of pH (pH = 4.9) for the dominance of acidic and near-neutral bacterial groups. Co-occurrence network analysis further revealed a substantially simplified network in plots with a pH of <4.9 versus samples with a pH of ≥4.9, indicating that soil acidification induces biodiversity loss and disrupts potential interactions among soil microbes. Our findings provide empirical evidence that soil abiotic properties nearly completely offset the roles of host plants in the assembly and potential interactions of rhizosphere microorganisms. Hence, reduction in inorganic fertilization and proper liming protocols should be seriously considered by local farmers to protect ancient Torreya forests.


Assuntos
Microbiota , Taxaceae , Produtos Agrícolas , Rizosfera , Solo/química , Microbiologia do Solo
4.
Cell Mol Life Sci ; 79(1): 69, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974624

RESUMO

Nitrogen (N) availability is a critical factor for plant development and crop yield, and it closely correlates to carbon (C) metabolism. Uncoupling protein (UCP) and alternative oxidase (AOX) exhibit a strong correlation with N and C metabolism. Here, we investigated the functions of UCP1 and AOX1a using their mutants and complementation lines in Arabidopsis adaptation to low N. Low N markedly increased AOX1a and UCP1 expression, alternative pathway capacity and UCP activity. Eight-day-old aox1a/ucp1 seedlings were more sensitive to low N than Col-0 and single mutants, exhibiting lower primary root length and higher anthocyanin accumulation. The net photosynthetic rate, electron transport rate, PSII actual photochemical efficiency, stomatal conductance and carboxylation efficiency were markedly decreased in ucp1 and aox1a/ucp1 compared to those in Col-0 and aox1a under low N stress; comparatively, chlorophyll content and non-photochemical quenching coefficient were the lowest and highest in aox1a/ucp1, respectively. Nitrate acquisition rate was accelerated in aox1a/ucp1, but its transport activity was decreased, which resulted in low nitrate content and nitrate reductase activity under low N condition. The C/N ratio in seeds, but not in leaves, is higher in aox1a/ucp1 than that in Col-0, aox1a and ucp1 under low N condition. RNA-seq analysis revealed that many genes involved in photosynthesis and C/N metabolism were markedly down-regulated in aox1a/ucp1 under low N stress. These results highlight the key roles of UCP1 and AOX1a in modulating photosynthetic capacity, C/N assimilation and distribution under low N stress.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Proteínas Mitocondriais/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Proteína Desacopladora 1/metabolismo , Antocianinas/metabolismo , Clorofila/análise , Proteínas Mitocondriais/genética , Oxirredutases/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , RNA-Seq , Plântula/metabolismo , Sementes/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Proteína Desacopladora 1/genética
5.
J Plant Physiol ; 268: 153558, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798465

RESUMO

Anthocyanin accumulation is a marked phenotype of plants under environmental stresses. PHYTOCHROME-INTERACTING FACTORs (PIFs) are involved in environment-induced anthocyanin biosynthesis through interacting with the MYB-bHLH-WD40 (MBW) complex. However, the molecular mechanism of this interaction remains unclear. The present study demonstrated that PIF3 and PIF5 can slightly repress anthocyanin accumulation under NaCl, low nitrogen (-N), or 6-BA treatments; in contrast, PIF4 can significantly repress anthocyanin accumulation. Bimolecular fluorescence complementation and yeast two-hybrid assays showed that PIF4 directly interacts with PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1), a MYB transcription factor in the MBW complex. Further analysis revealed that the active phytochrome binding (APB) domain in the N terminus of PIF4 is necessary for the interaction between PIF4 and PAP1. Yeast three-hybrid analysis showed that PIF4 competes with TRANSPARENT TESTA 8 (TT8) to bind PAP1, thereby interfering with the regulation of the MBW protein complex in anthocyanin synthesis. Consistently, the anthocyanin content in pap1-D/35S::PIF4 and 35S::PAP1/35S::PIF4 seedlings was markedly lower than that in pap1-D and 35S::PAP1 under 6-BA, MeJA, -N, and NaCl stresses, implying that overexpression of PIF4 suppresses anthocyanin accumulation in pap1-D and 35S::PAP1. Thus, PIF4 is genetically epistatic to PAP1. Taken together, PIF4 plays a negative role in modulating anthocyanin biosynthesis in Arabidopsis under different stress environments, and PIF4 interacts with PAP1 to affect the integrity of the MBW complex.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio , Estresse Fisiológico , Fatores de Transcrição
6.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884654

RESUMO

Salinity stress is a threat to yield in many crops, including soybean (Glycine max L.). In this study, three soybean cultivars (JD19, LH3, and LD2) with different salt resistance were used to analyze salt tolerance mechanisms using physiology, transcriptomic, metabolomic, and bioinformatic methods. Physiological studies showed that salt-tolerant cultivars JD19 and LH3 had less root growth inhibition, higher antioxidant enzyme activities, lower ROS accumulation, and lower Na+ and Cl- contents than salt-susceptible cultivar LD2 under 100 mM NaCl treatment. Comparative transcriptome analysis showed that compared with LD2, salt stress increased the expression of antioxidant metabolism, stress response metabolism, glycine, serine and threonine metabolism, auxin response protein, transcription, and translation-related genes in JD19 and LH3. The comparison of metabolite profiles indicated that amino acid metabolism and the TCA cycle were important metabolic pathways of soybean in response to salt stress. In the further validation analysis of the above two pathways, it was found that compared with LD2, JD19, and LH3 had higher nitrogen absorption and assimilation rate, more amino acid accumulation, and faster TCA cycle activity under salt stress, which helped them better adapt to salt stress. Taken together, this study provides valuable information for better understanding the molecular mechanism underlying salt tolerance of soybean and also proposes new ideas and methods for cultivating stress-tolerant soybean.


Assuntos
Glycine max/fisiologia , Tolerância ao Sal/fisiologia , Adaptação Fisiológica , Antioxidantes/metabolismo , Metaboloma , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Estresse Salino , Glycine max/metabolismo , Transcriptoma
7.
Plants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834692

RESUMO

Hulless barley, grown in the Qinghai Tibet Plateau, has a wide range of environmental stress tolerance. Alternative pathway (AP) and hydrogen peroxide (H2O2) are involved in enhancing plant tolerance to environmental stresses. However, the relationship between H2O2 and AP in hulless barley tolerance to cadmium (Cd) stress remains unclear. In the study, the role and relationship of AP and H2O2 under Cd stress were investigated in hulless barley (Kunlun14) and common barley (Ganpi6). Results showed that the expression level of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein were clearly induced more in Kunlun14 than in Ganpi 6 under Cd stress; moreover, these parameters were further enhanced by applying H2O2. Malondialdehyde (MDA) content, electrolyte leakage (EL) and NAD(P)H to NAD(P) ratio also increased in Cd-treated roots, especially in Kunlun 14, which can be markedly alleviated by exogenous H2O2. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting AP contributes to the H2O2-enhanced Cd tolerance. Further study demonstrated that the effect of SHAM on the antioxidant enzymes and antioxidants was minimal. Taken together, hulless barley has higher tolerance to Cd than common barley; and in the process, AP exerts an indispensable function in the H2O2-enhanced Cd tolerance. AP is mainly responsible for the decrease of ROS levels by dissipating excess reducing equivalents.

8.
J Proteomics ; 237: 104149, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588108

RESUMO

Nostoc flagelliforme is a type of terrestrial cyanobacteria that is distributed in arid or semi-arid steppes in China. To research the molecular mechanisms underlying the adaptation of N. flagelliforme to drought stress, the succinylated expression profile and changes in N. flagelliforme that resulted as a response to dehydration were analyzed by label-free proteomics. A total of 1149 succinylated sites, 1128 succinylated peptides, and 396 succinylated proteins were identified. Succinylated proteins were differentially involved in photosynthesis and energy metabolism, as well as in reactive oxygen species (ROS) scavenging. Motif-X analysis of succinylated sites determined a succinylation motif [KxxG]. N. flagelliforme adapts to dehydration by increasing glucose metabolism and pentose phosphate pathway flux, and decreasing photosynthetic rate, which some of the key proteins were succinylated. ROS scavenging was mainly involved in the regulation of the enzyme antioxidant defense system and non-enzymatic antioxidant defense system through succinylation modification, thus eliminating excessive ROS. Protein succinylation of N. flagelliforme may play an important regulatory role in response to dehydration. The results are foundational, as they can inform future research into the mechanisms involved in the succinylation regulation mechanism of N. flagelliforme in response to dehydration. SIGNIFICANCE: The global succinylation network involved in response to dehydration in N. flagelliforme has been established. We found that many succinylated proteins were involved in photosynthesis, glucose metabolism and antioxidation. The global survey of succinylated proteins and the changes of succinylated levels in response to dehydration provided effective information for the drought tolerance mechanism in N. flagelliforme.


Assuntos
Desidratação , Nostoc , China , Humanos , Processamento de Proteína Pós-Traducional
9.
Environ Microbiol ; 23(2): 1222-1237, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33346392

RESUMO

An arid ecosystem might be sensitive to nitrogen (N) deposition, but the associated ecosystem-specific response of soil microbes is not well studied. To assess the N enrichment effects on plant and prokaryotic community diversity, we performed a two-year NH4 NO3 treatment in a desert steppe in northwestern China. Results showed that N addition increased plant aboveground biomass and decreased plant Shannon diversity. A C4 herb (Salsola collina) became dominant, and loss of legume species was observed. The concentrations of soil NH4 + -N, NO3 - -N, microbial biomass N, and the plant aboveground biomass N pool increased in contrast to total N, suggesting that the N input into the arid ecosystem might mainly be assimilated by plants and exit the ecosystem. Remarkably, the α-diversity and structure of the soil prokaryotic community did not vary even at the highest N addition rate. Structural equation modelling further found that the plant aboveground N pool counteracted the acidification effect of N deposition and maintained soil pH thus partially stabilizing the composition of prokaryotic communities in a desert steppe. These findings suggested that the plants and N loss might contribute to the lack of responsiveness of soil prokaryotic community to N deposition in a desert steppe.


Assuntos
Clima Desértico , Ecossistema , Microbiota , Nitrogênio/análise , Microbiologia do Solo , Biomassa , China , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Plantas/metabolismo , Solo/química
10.
Front Microbiol ; 10: 828, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068914

RESUMO

Broomcorn millet (Panicum miliaceum L.) is one of the oldest domesticated crops and has been grown in arid and semiarid areas in China since 10,000 cal. BP. However, limited information is available about how bacterial communities within the rhizosphere of different broomcorn millet cultivars respond to drought stress. Here, we characterized the changes in the rhizobacterial assemblages of two broomcorn millet cultivars, namely, P. miliaceum cv. HeQu Red (HQR) and P. miliaceum YanLi 10 (YL10), from the jointing stage to the grain filling stage after they were exposed to a short-term drought stress treatment at the seedling stage. Drought significantly inhibited the growth of both cultivars, but the effect on YL10 was higher than that on HQR, indicating that the drought tolerance of HQR was greater than that of YL10. Proteobacteria (33.8%), Actinobacteria (21.0%), Acidobacteria (10.7%), Bacteroidetes (8.2%), Chloroflexi (6.3%), Gemmatimonadetes (5.9%), Firmicutes (3.5%), Verrucomicrobia (2.9%), and Planctomycetes (2.7%) were the core bacterial components of broomcorn millet rhizosphere as suggested by 16S rDNA sequencing results. The diversity and composition of bacterial rhizosphere communities substantially varied at different developmental stages of broomcorn millet. As the plants matured, the richness and evenness of the rhizobacterial community significantly decreased. Principal coordinate analysis showed that the structure of the bacterial rhizosphere community changed notably only at the flowering stage between the two cultivars, suggesting a stage-dependent effect. Although drought stress had no significant effect on the diversity and structure of the bacterial rhizosphere community between the two cultivars, differential responses to drought was found in Actinobacteria and Acinetobacter, Lysobacter, Streptomyces, and Cellvibrio. The relative abundance of Actinobacteria and Lysobacter, Streptomyces, and Cellvibrio in the YL10 rhizosphere was stimulated by the drought treatment compared with that in the HQR rhizosphere, whereas the opposite effect was found in Acinetobacter. Our results suggested that the effects of cultivars on bacterial rhizosphere communities were highly dependent on plant developmental stage, reflecting the genetic variations in the two broomcorn millet cultivars.

11.
Front Microbiol ; 9: 709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720969

RESUMO

Rhizosphere microbial communities are of great importance to mediate global biogeochemical cycles, plant growth, and fitness. Yet, the processes that drive their assembly remain unclear. The perennial shrubs Caragana spp., which is well known for their role in soil and water conservation, provides an ideal system to study the biogeography of rhizosphere microorganism communities within natural ecosystems. In order to detect how bacterial rhizosphere communities vary in terms of community diversity and composition, the rhizosphere bacterial community of three Caragana species, Caragana microphylla Lam., C. liouana Zhao, and C. korshinskii Kom., which distributed in arid and semi-arid region of northern China were investigated. Across species, Proteobacteria (61.1%), Actinobacteria (16.0%), Firmicutes (8.6%), Bacteroidetes (3.0%), Acidobacteria (3.5%), Gemmatimonadetes (1.4%), and Cyanobacteria (1.0%) were the most dominant phyla in the rhizosphere of the three Caragana species. The relative abundance of Cyanobacteria was significantly higher in rhizosphere of C. korshinskii Kom. compared with C. microphylla Lam. and C. liouana Zhao, while the opposite was found for Gemmatimonadetes in rhizosphere of C. microphylla Lam. relative to C. liouana Zhao. Stepwise multiple linear regression analysis showed that both diversity and richness of the bacterial rhizosphere communities significantly and positively correlated with soil pH (p < 0.01). Distance-based redundancy analysis indicated that soil properties and non-soil parameters detected there accounted for 47.5% of bacterial phylogenetic structure variation (p < 0.01) all together. Meanwhile, soil total phosphorus accounted for the greatest proportion of community structure variance (9.7%, p < 0.01), followed by electrical conduction (6.5%), altitude (5.8%), soil pH (5.4%), mean annual precipitation (3.6%) and total nitrogen (3.6%, p < 0.05 in all cases). Furthermore, partial Mantel test suggested that bacterial rhizosphere community structure significantly correlated with geographical distance, indicating that the less geographical distant sample sites tend to harbor more similar bacterial rhizosphere community. Our results shed new light on the mechanisms of coevolution and interaction between long-lived plants and their rhizosphere bacterial communities across environmental gradients.

12.
Mitochondrial DNA B Resour ; 2(1): 43-45, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33473711

RESUMO

Panicum miliaceum is the most important and ancient domesticated crops in the world. The complete chloroplast genome of P. miliaceum was sequenced using the Illumina Hiseq platform (Illumina Inc., San Diego, CA). The chloroplast genome of P. miliaceum was 139,929 bp in length, with 38.60% GC content. It contains a pair of inverted repeats (IRs) (22,723 bp) which were separated by a large single copy (LSC) (81,918 bp) and a small single copy region (SSC) (12,565 bp). A total of 132 genes were annotated, which included 84 protein coding genes, 40 tRNA genes and eight rRNA genes. The neighbour-joining (NJ) phylogenetic analysis with the reported chloroplast genomes showed that P. miliaceum chloroplasts are most closely related to those of the Gramineae family.

13.
Plant Cell Rep ; 35(11): 2381-2401, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27562382

RESUMO

KEY MESSAGE: Histochemical staining and RNA-seq data demonstrated that the ROS- and plant hormone-regulated stress responses are the key early events of narciclasine signaling in Arabidopsis root cells. Narciclasine, an amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, employs a broad range of functions on plant development and growth. However, its molecular interactions that modulate these roles in plants are not fully understood. To elucidate the global responses of Arabidopsis roots to short-term narciclasine exposure, we first measured the accumulation of H2O2 and O2- with histochemical staining, and then profiled the gene expression pattern in Arabidopsis root tips treated with 0.5 µM narciclasine across different exposure times by RNA-seq. Physiological measurements showed a significant increase in H2O2 began at 30-60 min of narciclasine treatment and O2- accumulated by 120 min. Compared with controls, 236 genes were upregulated and 54 genes were downregulated with 2 h of narciclasine treatment, while 968 genes were upregulated and 835 genes were downregulated with 12 h of treatment. The Gene Ontology analysis revealed that the differentially expressed genes were highly enriched during oxidative stress, including those involved in the "regulation of transcription", "response to oxidative stress", "plant-pathogen interaction", "ribonucleotide binding", "plant cell wall organization", and "ribosome biogenesis". Moreover, Kyoto Encyclopedia of Genes and Genomes pathway enrichment statistics suggested that carbohydrate metabolism, amino acid metabolism, amino sugar and nucleotide sugar metabolism, and biosynthesis of phenylpropanoid and secondary metabolites were significantly inhibited by 12 h of narciclasine exposure. Hence, our results demonstrate that hormones and H2O2 are important regulators of narciclasine signaling and help to uncover the factors involved in the molecular interplay between narciclasine and phytohormones in Arabidopsis root cells.


Assuntos
Alcaloides de Amaryllidaceae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica/métodos , Meristema/genética , Fenantridinas/metabolismo , Transdução de Sinais/genética , Alcaloides de Amaryllidaceae/farmacologia , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Meristema/citologia , Meristema/efeitos dos fármacos , Fenantridinas/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Explosão Respiratória/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Superóxidos/metabolismo
14.
Ecol Evol ; 6(9): 2763-73, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27217939

RESUMO

Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.

15.
Planta ; 242(6): 1349-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232920

RESUMO

MAIN CONCLUSION: The present study documented the action of a potential allelochemical, narciclasine, on auxin transport in Arabidopsis by mainly affecting subcellular trafficking of PIN and AUX1 proteins and through interfering actin cytoskeletal organization. Narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, has potential allelopathic activity and affects auxin transport. However, little is known about the cellular mechanism of this inhibitory effect of NCS on auxin transport. The present study characterizes the effects of NCS at the cellular level using transgenic Arabidopsis plants harboring the promoters of PIN, in combination with PIN-GFP proteins or AUX1-YFP fusions. NCS treatment caused significant reduction in the abundance of PIN and AUX1 proteins at the plasma membrane (PM). Analysis of the subcellular distribution of PIN and AUX1 proteins in roots revealed that NCS induced the intracellular accumulation of auxin transporters, including PIN2, PIN3, PIN4, PIN7 and AUX1. However, other PM proteins, such as PIP2, BRI1, and low temperature inducible protein 6b (LTI6b), were insensitive to NCS treatment. NCS-induced PIN2 compartments were further defined using endocytic tracer FM 4-64 labeled early endosomes and suggested that this compound affects the endocytosis trafficking of PIN proteins. Furthermore, pharmacological analysis indicated that the brefeldin A (BFA)-insensitive pathway is employed in the cellular effects of NCS on PIN2 trafficking. Although NCS did not alter actin dynamics in vitro, it resulted in the depolymerization of the actin cytoskeleton in vivo. This disruption of actin filaments by NCS subsequently influences the actin-based vesicle motility. Hence, the elucidation of the specific role of NCS is useful for further understanding the mechanisms of allelopathy at the phytohormone levels.


Assuntos
Citoesqueleto de Actina/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fenantridinas/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas
16.
Plant Cell Rep ; 32(8): 1219-29, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636663

RESUMO

KEY MESSAGE: The major insight in this manuscript is that we identified a new flowering regulator, GmSOC1-like, which may participate in the initiation and maintenance of flowering in soybean. Flowering is pivotal for the reproductive behavior of plants, and it is regulated by complex and coordinated genetic networks that are fine-tuned by endogenous cues and environmental signals. To better understand the molecular basis of flowering regulation in soybean, we isolated GmSOC1 and GmSOC1-like, two putative soybean orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE 20 (SOC1/AGL20). The expression pattern of GmSOC1-like was analyzed by qRT-PCR in Zigongdongdou, a photoperiod-sensitive soybean cultivar. GmSOC1-like was widely expressed at different levels in most organs of the soybean, with the highest expression in the shoot apex during the early stage of floral transition. In addition, its expression showed a circadian rhythm pattern, with the highest expression at midnight under short-day (SD) condition. Intriguingly, GmSOC1-like was induced 4 days earlier than GmSOC1 during flowering transition in SD, suggesting that GmSOC1 and GmSOC1-like expression might be differentially regulated. However, under long-day (LD) condition, the expression of GmSOC1 and GmSOC1-like decreased gradually in the shoot apex of Zigongdongdou, which is in accordance with the fact that Zigongdongdou maintains vegetative growth in LD. In addition, overexpression of GmSOC1-like stimulated the flowering of Lotus corniculatus cv. supperroot plants. In conclusion, the results of this study indicate that GmSOC1-like may act as a flowering inducer in soybean.


Assuntos
Flores/genética , Flores/fisiologia , Genes de Plantas/genética , Glycine max/genética , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Ritmo Circadiano/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fotoperíodo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transporte Proteico , Glycine max/crescimento & desenvolvimento , Frações Subcelulares/metabolismo
17.
Planta ; 236(2): 597-612, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476291

RESUMO

The plant hormone auxin plays a central role in the regulation of plant growth and development, as well as in responses to environmental stimuli. Narciclasine (NCS, an Amaryllidaceae alkaloid) isolated from Narcissus tazetta bulbs has a broad range of inhibitory effects on plants. In this study, the role of NCS in responses to auxin in Arabidopsis thaliana roots was investigated. We demonstrated the inhibitory effects of NCS on auxin-inducible lateral root formation, root hair formation, primary root growth, and the expression of primary auxin-inducible genes in Arabidopsis roots using DR5::GUS reporter gene, native auxin promoters (IAA12::GUS, IAA13::GUS), and quantitative reverse transcription PCR analysis. Results also showed that NCS did not affect the expression of cytokinin-inducible ARR5::GUS reporter gene. NCS relieved the auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCFTIR1 ubiquitin-proteasome pathway. In addition, NCS did not alter the auxin-stimulated interaction between IAA7/AXR2 (Aux/IAA proteins) and the F-box protein TIR1 activity of the proteasome. Taken together, these results suggest that NCS acts on the auxin signaling pathway upstream of TIR1, which modulates Aux/IAA protein degradation, and thereby affects the auxin-mediated responses in Arabidopsis roots.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Fenantridinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Alcaloides de Amaryllidaceae/isolamento & purificação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Fenantridinas/isolamento & purificação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma , Proteólise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Physiol Plant ; 144(1): 48-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21916896

RESUMO

Narciclasine (NCS) is a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs. It is a commonly used anticancer agent in animal systems. In this study, we provide evidence to show that NCS also acts as an agent in inducing programmed cell death (PCD) in tobacco Bright Yellow-2 (TBY-2) cell cultures. NCS treatment induces typical PCD-associated morphological and biochemical changes, namely cell shrinkage, chromatin condensation and nuclear DNA degradation. To investigate possible signaling events, we analyzed the production of reactive oxygen species (ROS) and the function of mitochondria during PCD induced by NCS. A biphasic behavior burst of hydrogen peroxide (H(2)O(2)) was detected in TBY-2 cells treated with NCS, and mitochondrial transmembrane potential (MTP) loss occurred after a slight increase. Pre-incubation with antioxidant catalase (CAT) and N-acetyl-L-cysteine (NAC) not only significantly decreased the H(2)O(2) production but also effectively retarded the decrease of MTP and reduced the percentage of cells undergoing PCD after NCS treatment. In conclusion, our results suggest that NCS induces PCD in plant cells; the oxidative stress (accumulation of H(2)O(2)) and the MTP loss play important roles during NCS-induced PCD.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/fisiologia , Nicotiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenantridinas/farmacologia , Acetilcisteína/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Narcissus/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
19.
BMC Plant Biol ; 11: 184, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22204558

RESUMO

BACKGROUND: Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. NCS has inhibitory effects on a broad range of biological activities and thus has various potential practical applications. Here we examine how NCS represses plant root growth. RESULTS: Results showed that the inhibition of NCS on cell division in Arabidopsis root tips and its effects on cell differentiation are concentration-dependent; at low concentrations (0.5 and 1.0 µM) NCS preferentially targets mitotic cell cycle specific/cyclin complexes, whereas at high concentration (5.0 µM) the NCS-stimulated accumulation of Kip-related proteins (KRP1 and RP2) affects the CDK complexes with a role at both G1/S and G2/M phases. CONCLUSIONS: Our findings suggest that NCS modulates the coordination between cell division and differentiation in Arabidopsis root tips and hence affects the postembryonic development of Arabidopsis seedlings.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Meristema/efeitos dos fármacos , Fenantridinas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meristema/citologia , Nicotiana
20.
J Plant Physiol ; 168(11): 1149-56, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21511360

RESUMO

Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires transport facilitators of the PIN family, largely contributes to the establishment and maintenance of auxin gradients and mediates multiple developmental processes. Here, we report the effects of narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, on postembryonic development of Arabidopsis roots. Arabidopsis seedlings grown on NCS showed defects in root gravitropism which correlates with a reduction in auxin transport in roots. Expressions of auxin transport genes were affected and the polar localization of PIN2 protein was altered under NCS treatment. Taken together, we propose that NCS modulates auxin transport gene expression and PIN2 localization, and thus affects auxin transport and auxin distribution necessary for postembryonic development of Arabidopsis roots.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Arabidopsis/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Fenantridinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA