RESUMO
Vitis coignetiae samples were collected from several locations in the northern area of Japan, and virome analysis using a high-throughput sequencing technique was performed. The data indicated that some of the collected samples were in mixed infections by various RNA viruses. Among these viruses, three were identified as newly recognized species with support of sequence identity and phylogenetic analysis. The viruses have been provisionally named the Vitis varicosavirus, Vitis emaravirus, and Vitis crypticvirus, and were assigned to the genus Varicosavirus, Emaravirus, and Deltapartitivirus, respectively.
Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Rhabdoviridae/classificação , Rhabdoviridae/genética , Vitis/virologia , Sequência de Bases , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , RNA Viral , Rhabdoviridae/isolamento & purificação , Viroma , Sequenciamento Completo do GenomaRESUMO
Chrysanthemum stunt viroid (CSVd) is one of the most severe threats in Chrysanthemum morifolium production. Over the last decade, several studies have reported the natural occurrence of CSVd resistance in chrysanthemum germplasms. Such CSVd-resistant germplasms are desirable for the stable production of chrysanthemum plants. Current surveys include finding new resistant chrysanthemum cultivars, breeding, and revealing resistant mechanisms. We review the progress, from discovery to current status, of CSVd-resistance studies, while introducing information on the improvement of associated inoculation and diagnostic techniques.
Assuntos
Chrysanthemum/virologia , Resistência à Doença , Doenças das Plantas/virologia , Viroides , Melhoramento VegetalRESUMO
Chrysanthemum stunt viroid (CSVd) was inoculated into two chrysanthemum (Chrysanthemum morifolium) cultivars, the CSVd-susceptible cultivar Piato and the CSVd-resistant cultivar Mari Kazaguruma. For CSVd inoculation, grafting and Agrobacterium-mediated inoculation were used. In grafting experiments, CSVd was detectable in Mari Kazaguruma after grafting onto infected Piato, but after removal of infected rootstocks, CSVd could not be detected in the uppermost leaves. In agroinfection experiments, CSVd systemic infection was observed in Piato but not in Mari Kazaguruma. However, agro-inoculated leaves of Mari Kazaguruma accumulated circular CSVd RNA to levels equivalent to those in Piato at 7 days post-inoculation. In situ detection of CSVd in inoculated leaves revealed that CSVd was absent in phloem of Mari Kazaguruma, while CSVd strongly localized to this site in Piato. We hypothesize that CSVd resistance in Mari Kazaguruma relates not to CSVd replication but to CSVd movement in leaves.
RESUMO
Saintpaulia ionantha is propagated by adventitious buds in horticulture, and periclinal chimeral cultivars are usually difficult to propagate. However, some periclinal chimeral cultivars can be propagated with adventitious buds, and the mechanism of which has been unknown. Striped flower cultivars "Kaname," "Concord," and "Monique" were used to investigate what causes flower color separation in adventitious shoot-derived plants by tissue culture. These cultivars were revealed to have mutated flavonoid 3', 5' hydroxylase (SiF3'5'H), WDR1 (SiWDR1), or flavonoid 3 hydroxylase (SiF3H), respectively, in their L1 layer. From our previous study using "Kaname," all flowers from adventitious shoots were colored pink, which was the epidermal color of mother plants' flowers. We used "Concrd" and "Monique" from which we obtained not only monochromatic-colored plants the same as the epidermal color of mother plants, but also plants with a monochromatic colored plants, same as the subepidermal color, and a striped flower color the same as mother plants. Histological observations revealed that epidermal cells divided actively at 14 d after culture and they were involved in the formation of adventitious shoots in the cultured leaf segments of "Kaname." On the other hand, in "Concord" and "Monique," the number of divided cells in the subepidermis was rather higher than that of epidermal cells, and subepidermal cells were sometimes involved in shoot formation. In addition, the plant and leaf size of L1-derived plants from "Concord" and "Monique" were non-vigorous and smaller than those derived from the subepidermal layer. In conclusion, periclinal chimeral cultivars of Saintpaulia can be divided into two types. One type has a high cell division activity in the L1 layer, from which only single flower-colored plants derived from L1 can be obtained as adventitious shoots. Another type has a low cell division activity in the L1 layer, from which striped flower-colored plants the same as mother plants derived from several layers including L1 can be obtained as adventitious shoots. In the periclinal chimeral cultivar capable of propagation with adventitious shoots, the possibility was shown that cells in the L2 layer could form shoots by involving cells of the L1 layer with a low division activity.
RESUMO
Agroinfiltration was tested as a method of inoculation of chrysanthemum plants with chrysanthemum stunt viroid (CSVd). Binary vectors harboring dimeric CSVd sequences in sense and antisense orientations were constructed, and Agrobacterium transfected with these binary vectors was infiltrated into chrysanthemum leaves. Northern blotting and reverse transcription polymerase chain reaction analysis showed that local infection was established within 7 days and systemic infection within 20 days. CSVd polarities showed no difference in infectivity. This study showed that agroinfiltration of chrysanthemum plants is an easy, rapid, and cost-effective method for CSVd inoculation.
Assuntos
Agrobacterium/virologia , Chrysanthemum/microbiologia , Chrysanthemum/virologia , Viroides , Doenças das Plantas/virologia , Folhas de Planta/virologiaRESUMO
KEY MESSAGE: CSVd could not infect Nicotiana benthamiana when the plants were pretreated with crude leaf extract of Capsicum chinense 'Sy-2'. C. chinense leaves were revealed to contain strong RNA-digesting activity. Several studies have identified active antiviral and antiviroid agents in plants. Capsicum plants are known to contain antiviral agents, but the mechanism of their activity has not been determined. We aimed to elucidate the mechanism of Capsicum extract's antiviroid activity. Chrysanthemum stunt viroid (CSVd) was inoculated into Nicotiana benthamiana plants before or after treating the plants with a leaf extract of Capsicum chinense 'Sy-2'. CSVd infection was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 3 weeks after inoculation. When Capsicum extract was sprayed or painted onto N. benthamiana before inoculation, it was effective in preventing infection by CSVd. To evaluate CSVd digestion activity in leaf extracts, CSVd was mixed with leaf extracts of Mirabilis, Phytolacca, Pelargonium and Capsicum. CSVd-digesting activities were examined by quantifying undigested CSVd using qRT-PCR, and RNA gel blotting permitted visualization of the digested CSVd. Only Capsicum leaf extract digested CSVd, and in the Capsicum treatment, small digested CSVd products were detected by RNA gel blot analysis. When the digesting experiment was performed for various cultivars and species of Capsicum, only cultivars of C. chinense showed strong CSVd-digesting activity. Our observations indicated that Capsicum extract contains strong RNA-digesting activity, leading to the conclusion that this activity is the main mechanism for protection from infection by CSVd through spraying or painting before inoculation. To our knowledge, this is the first report of a strong RNA-digesting activity by a plant extract.