Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(7): 198, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819647

RESUMO

Although usefulness of masks for protection against respiratory pathogens, accumulation of pathogens on their surface represents a source of infection spread. Here we prepared a plant extract-based disinfecting layer to be used in coating masks thus inhibiting their capacity to transmit airborne pathogens. To reach this, a polypropylene membrane base was coated with a layer of polyvinyledine difluoride polymer containing 500 µg/ml of Camellia sinensis (Black tea) methanolic extract. Direct inhibitory effects of C. sinensis were initially demonstrated against Staphylococcus aureus (respiratory bacteria), influenza A virus (enveloped virus) and adenovirus 1 (non-enveloped virus) which were directly proportional to both extract concentration and incubation time with the pathogen. This was later confirmed by the capacity of the supplemented membrane with the plant extract to block infectivity of the above mentioned pathogens, recorded % inhibition values were 61, 72 and 50 for S. aureus, influenza and adenovirus, respectively. In addition to the disinfecting capacity of the membrane its hydrophobic nature and pore size (154 nm) prevented penetration of dust particles or water droplets carrying respiratory pathogens. In summary, introducing this layer could protect users from infection and decrease infection risk upon handling contaminated masks surfaces.


Assuntos
Camellia sinensis , Máscaras , Extratos Vegetais , Staphylococcus aureus , Camellia sinensis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Máscaras/virologia , Desinfetantes/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Humanos
2.
Z Naturforsch C J Biosci ; 79(1-2): 13-24, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38265042

RESUMO

SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.


Assuntos
Amidas , COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus , Pirazinas , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Egito , Mutação , RNA , SARS-CoV-2/genética , Suramina , RNA-Polimerase RNA-Dependente de Coronavírus/efeitos dos fármacos , RNA-Polimerase RNA-Dependente de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA