Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; 370(2): 345-57, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26577811

RESUMO

Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.


Assuntos
Hipóxia Celular , Células Progenitoras Endoteliais/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/terapia , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-26491365

RESUMO

BACKGROUND: Rosacea, a common chronic skin disorder, is currently managed by patient education, pharmacological drugs, medical devices (laser and light therapies), and use of proper skin cares. Unfortunately, none of these actual treatments used alone or in combination is curative, and so we proposed a dermocosmetic active ingredient to mitigate some aspects of the rosacea and particularly for erythematotelangiectatic rosacea. METHODS: Dermocosmetic active ingredient is composed of three glucosylated derivatives of natural plants hydroxybenzoic acid and hydroxycinnamic acids (rosmarinic acid, gallic acid, and caffeic acid). Anti-inflammatory, anti-angiogenesis, and anti-degranulation studies were done on cellular models (keratinocytes, mast cells, and endothelial cells). Efficiency of the active ingredient in comparison to placebo was assessed clinically on human volunteers having erythematotelangiectatic rosacea. The active and placebo were applied topically twice a day for 28 days. Biometrical analyses were done using a siascope tool. RESULTS: We found that the active ingredient decreases inflammation (inhibition of interleukin-8 and tumor necrosis factor release), decreases degranulation of mast cells (inhibition of histamine release), and controls angiogenesis mechanism (inhibition of the production of vascular endothelial growth factor and neovessel formation) on cellular models. Study on human volunteers confirmed macroscopically the efficiency of this active ingredient, as we observed no neovessel formation and less visible vessels. CONCLUSION: Although rosacea is a skin condition disorder that is difficult to heal, the studies have shown that this active ingredient could be a dermocosmetic support, especially for erythematotelangiectatic rosacea armamentarium. The active ingredient was topically applied on the face for 28 days and improved erythematotelangiectatic rosacea symptoms either by decreasing them (vessels are less visible) or by limiting their development (any neovessels). The active ingredient decreases inflammation (inhibition of interleukin-8 and tumor necrosis factor release), decreases degranulation of mast cells (inhibition of histamine release), and limits the angiogenesis process (inhibition of vascular endothelial growth factor production and neovessel formation).

3.
Contemp Oncol (Pozn) ; 19(1A): A39-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691820

RESUMO

The tumour microenvironment, long considered as determining cancer development, still offers research fields to define hallmarks of cancer. An early key-step, the "angiogenic switch", allows tumour growth. Pathologic angiogenesis is a cancer hallmark as it features results of tumour-specific properties that can be summarised as a response to hypoxia. The hypoxic state occurs when the tumour mass reaches a volume sufficient not to permit oxygen diffusion inside the tumour centre. Thus tumour cells turn on adaptation mechanisms to the low pO2 level, inducing biochemical responses in terms of cytokines/chemokines/receptors and consequently recruitment of specific cell types, as well as cell-selection inside the tumour. Moreover, these changes are orchestrated by the microRNA balance strongly reflecting the hypoxic milieu and mediating the cross-talk between endothelial and tumour cells. MicroRNAs control of the endothelial precursor-vascular settings shapes the niche for selection of cancer stem cells.

4.
Arch Immunol Ther Exp (Warsz) ; 61(4): 285-99, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23575964

RESUMO

Inefficient immune response is a major glitch during tumor growth and progression. Chaotic and leaky blood vessels created in the process of angiogenesis allow tumor cells to escape and extricate anti-cancer immunity. Proangiogenic characteristics of hypoxic tumor microenvironment maintained by low oxygen tension attract endothelial progenitor cells, drive expansion of cancer stem cells, and deviantly differentiate monocyte descendants. Such cellular milieu further boosts immune tolerance and eventually appoint immunity for cancer advantage. Blood vessel normalization strategies that equilibrate oxygen levels within tumor and fix abnormal vasculature bring exciting promises to future anticancer therapies especially when combined with conventional chemotherapy. Recently, a new group of microRNAs (miRs) engaged in angiogenesis, called angiomiRs and hypoxamiRs, emerged as new therapeutic targets in cancer. Some of those miRs were found to efficiently regulate cancer immunity and their dysregulation efficiently programs aberrant angiogenesis and cancer metastasis. The present review highlights new findings in the field of miRs proficiency to normalize aberrant angiogenesis and to restore anti-tumor immune responses.


Assuntos
MicroRNAs/metabolismo , Neoplasias , Neovascularização Patológica , Evasão Tumoral , Proteínas Angiogênicas/metabolismo , Animais , Permeabilidade Capilar , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral
5.
Gene ; 525(2): 208-16, 2013 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23542073

RESUMO

Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine.


Assuntos
Terapia Genética/métodos , Neoplasias/terapia , Animais , Sistemas de Liberação de Medicamentos/métodos , Exossomos/genética , Ganciclovir/administração & dosagem , Ganciclovir/uso terapêutico , Humanos , Lipossomos/administração & dosagem , Neoplasias/patologia , Vírus Oncolíticos/genética
6.
Exp Dermatol ; 21(10): 723-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882247

RESUMO

The skin is a multifunctional organ and a first line of defense actively protecting from environmental stress caused by injury, microbial treat, UV irradiation and environmental toxins. Diverse cutaneous cell types together with extracellular matrix elements and factors create a dynamic scene for cellular communication crucial in vital processes such as wound healing, inflammation, angiogenesis, immune response. Direct functional success of skin equilibrium depends on its microenvironment settings and particularly the local oxygen tension. Indeed, skin entire milieu is characterized by and highly dependent on its low oxygen tension called physioxia as emphasized in this review. In the context of skin physioxia, we review and propose here new approaches to minimize age-related changes in skin state and function. We particularly emphasize carbohydrate-mediated interactions and new 3D models of engineered skin substitutes. We highlight newly emerged tools and targets including stem cells, miRNAs, matrix metalloproteinases, mitochondria and natural antioxidants that are promising in prevention of skin ageing and disease restraint. In the era of advanced dermatology, new attempts are bringing us closer to 'well being' perception.


Assuntos
Oxigênio/metabolismo , Pele/metabolismo , Animais , Metabolismo dos Carboidratos , Comunicação Celular , Microambiente Celular , Humanos , Modelos Biológicos , Pele/imunologia , Envelhecimento da Pele/fisiologia , Pele Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA