Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Adolesc Young Adult Oncol ; 11(3): 290-296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34672806

RESUMO

Background: Computer-based cognitive rehabilitation programs may help adolescent and young adult (AYA) patients with cancer-related cognitive impairment. This pilot study investigated the feasibility of cognitive rehabilitation as a preventive intervention for AYA patients receiving chemotherapy. Explorative objectives included the correlation of cognitive performance with serum brain-derived neurotrophic factor (BDNF). Methods: This pilot prospective study included English-speaking patients 12-25 years of age with a fist diagnosis of cancer requiring chemotherapy. Participants enrolled in the intervention arm participated in a computer-based neurocognitive training program for 20-30 minutes daily for 16 weeks. Outcome measures, including engagement with and completion of computerized neurocognitive testing and serum BDNF levels, were obtained within the first month following diagnosis, ∼16 and 24 weeks from enrollment. Results: Fourteen of 18 eligible patients provided consent, with 7 patients assigned to each the intervention arm and nonintervention arm. Seventy-one percent of the patients in the intervention arm completed at least 80% of the required activities. Compared to baseline, patients in the nonintervention arm demonstrated higher prevalence of impairment in four of the six cognitive domains (processing speed, visual attention, attention/working memory, and executive function) at the end of the study period. There was a nonstatistically significant reduction of serum BDNF levels over time, which was observed in both intervention and nonintervention arms. Conclusion: This pilot study provides some evidence that it is feasible for AYAs with new cancer diagnoses to receive standardized cognitive rehabilitation. Patients receiving cognitive activities experienced less impairment in numerous cognitive domains.


Assuntos
Disfunção Cognitiva , Neoplasias , Adolescente , Fator Neurotrófico Derivado do Encéfalo , Cognição , Disfunção Cognitiva/etiologia , Estudos de Viabilidade , Humanos , Neoplasias/complicações , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
3.
Am J Respir Cell Mol Biol ; 48(1): 53-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23002101

RESUMO

Recently, we have suggested that down-regulation of homeostatic mesenchymal peroxisome proliferator-activated receptor γ signaling after in utero nicotine exposure might contribute to asthma. Here, we have exploited an in vivo rat model of asthma to determine if the effects of perinatal nicotine exposure on offspring pulmonary function and mesenchymal markers of airway contractility in both tracheal and lung parenchymal tissue are sex specific, and whether the protection afforded by the peroxisome proliferator-activated receptor γ agonist, rosiglitazone (RGZ), against the perinatal nicotine-induced effect on offspring lung is also sex specific. Pregnant rat dams received placebo, nicotine, or nicotine plus RGZ daily from Embryonic Day 6 until Postnatal Day 21, at which time lung resistance, compliance, tracheal contractility, and the expression of structural and functional mesenchymal markers of pulmonary contractility were determined. Compared with control animals, perinatal nicotine exposure caused a significant increase in airway resistance and a decrease in airway compliance after a methacholine challenge in both male and female offspring, with more pronounced changes in the males. In contrast to this, the effects of perinatal nicotine exposure on acetylcholine-induced tracheal constriction, along with the expression of its mesenchymal markers, were observed exclusively in the male offspring. Concomitant treatment with RGZ normalized the nicotine-induced alterations in pulmonary function in both sexes, as well as the male-specific effects on acetylcholine-induced tracheal constriction, along with the affected mesenchymal markers. These data suggest that perinatal nicotine exposure causes sex-specific perinatal cigarette smoke exposure-induced asthma, providing a powerful phenotypic model for unequivocally determining the underlying nature of the cell molecular mechanism for this disease.


Assuntos
Asma/etiologia , Nicotina/toxicidade , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Asma/patologia , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Complacência Pulmonar/efeitos dos fármacos , Masculino , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Nicotina/administração & dosagem , PPAR gama/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Caracteres Sexuais , Fumar/efeitos adversos , Tiazolidinedionas/administração & dosagem , Traqueia/efeitos dos fármacos , Traqueia/patologia
4.
BMC Med ; 10: 129, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23106849

RESUMO

BACKGROUND: By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known. METHODS: Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups. RESULTS: Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P < 0.01, nicotine versus control; P < 0.05, males versus females; and P > 0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P < 0.01, nicotine versus control; P < 0.0001, males versus females; P > 0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P < 0.01, nicotine versus control, and P < 0.05, males versus females) and isolated lung fibroblasts (for example, 45% increase in fibronectin protein levels, P < 0.05, nicotine versus control), along with decreased PPARγ expression (30% decrease, P < 0.05, nicotine versus control), but only affected contractile proteins in the male trachea (P < 0.05, nicotine versus control, and P < 0.0001, males versus females). All of the nicotine-induced changes in the lung and gonad DNA methylation and histone 3 and 4 acetylation were normalized by the PPARγ agonist rosiglitazone except for the histone 4 acetylation in the lung. CONCLUSIONS: Germline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred through the germline to subsequent generations, a ground-breaking finding that shifts the current asthma paradigm, opening up many new avenues to explore.


Assuntos
Asma/induzido quimicamente , Feto/efeitos dos fármacos , Nicotina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Animais Recém-Nascidos , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA