Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030545

RESUMO

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Assuntos
Coffea , Oxigenases , Filogenia , Estresse Fisiológico , Estresse Fisiológico/genética , Oxigenases/genética , Oxigenases/metabolismo , Coffea/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Genoma de Planta/genética , Café/genética , Regiões Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA