Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EJNMMI Res ; 8(1): 6, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29356983

RESUMO

BACKGROUND: Ideally, monoclonal antibodies provide selective treatment by targeting the tumour, without affecting normal tissues. Therefore, antibody imaging is of interest, preferably in early stages of drug development. However, the imaging signal consists of specific, as well as non-specific, uptake. The aim of this study was to assess specific, target-mediated uptake in normal tissues, with immuno-PET in a phase I dose escalation study, using the anti-CD44 antibody RG7356 as example. RESULTS: Data from thirteen patients with CD44-expressing solid tumours included in an imaging sub-study of a phase I dose escalation clinical trial using the anti-CD44 antibody RG7356 was analysed. 89Zirconium-labelled RG7356 (1 mg; 37 MBq) was administered after a variable dose of unlabelled RG7356 (0 to 675 mg). Tracer uptake in normal tissues (liver, spleen, kidney, lung, bone marrow, brain and blood pool) was used to calculate the area under the time antibody concentration curve (AUC) and expressed as tissue-to-blood AUC ratios. Within the dose range of 1 to 450 mg, tissue-to-blood AUC ratios decreased from 10.6 to 0.75 ± 0.16 for the spleen, 7.5 to 0.86 ± 0.18 for the liver, 3.6 to 0.48 ± 0.13 for the bone marrow, 0.69 to 0.26 ± 0.1 for the lung and 1.29 to 0.56 ± 0.14 for the kidney, indicating dose-dependent uptake. In all patients receiving ≥ 450 mg (n = 7), tumour uptake of the antibody was observed. CONCLUSIONS: This study demonstrates how immuno-PET in a dose escalation study provides a non-invasive technique to quantify dose-dependent uptake in normal tissues, indicating specific, target-mediated uptake.

2.
J Nucl Med ; 53(12): 1836-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143089

RESUMO

UNLABELLED: Two mitogen-activated protein kinase kinase (MAPK2, also known as MEK) inhibitors were assessed with (18)F-FDG PET in separate phase I clinical studies, clearly illustrating the potential of metabolic imaging for dose, dosing regimen, and compound selection in early-phase trials and utility for predicting nonresponding patients. METHODS: (18)F-FDG PET data were collected during 2 independent, phase I, dose-escalation trials of 2 novel MEK inhibitors (RO5126766 and RO4987655). PET acquisition procedures were standardized between the 2 trials, and PET images were analyzed centrally. Imaging was performed at baseline; at cycle 1, day 15; and at cycle 3, day 1. A 10-mm-diameter region of interest was defined for up to 5 lesions, and peak standardized uptake values were determined for each lesion. The relationship between PET response and pharmacokinetic factors (dose and exposure), inhibition of extracellular-signal-regulated kinase (ERK) phosphorylation in peripheral blood mononuclear cells, and anatomic tumor response as measured by Response Evaluation Criteria in Solid Tumors was investigated for both compounds. RESULTS: Seventy-six patients underwent PET, and 205 individual PET scans were analyzed. Strong evidence of biologic activity was seen as early as cycle 1, day 15, for both compounds. (18)F-FDG PET revealed striking differences between the 2 MEK inhibitors at their recommended dose for phase II investigation. The mean amplitude of the decrease in (18)F-FDG from baseline to cycle 1, day 15, was greater for patients receiving RO4987655 than for those receiving RO5126766 (47% vs. 16%, respectively; P = 0.052). Furthermore, a more pronounced relationship was seen between the change in (18)F-FDG uptake and dose or exposure and phosphorylated ERK inhibition in peripheral blood mononuclear cells in patients receiving RO4987655. For both investigational drugs, PET responses tended to be greatest in patients with melanoma tumors. (18)F-FDG was able to identify early nonresponding patients with a 97% negative predictive value. CONCLUSION: These data exemplify the role of (18)F-FDG PET for guiding the selection of novel investigational drugs, choosing dose in early-phase clinical development, and predicting nonresponding patients early in treatment.


Assuntos
Benzamidas/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Cumarínicos/uso terapêutico , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Oxazinas/uso terapêutico , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Benzamidas/farmacologia , Cumarínicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxazinas/farmacologia , Fosfoproteínas/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Falha de Tratamento , Adulto Jovem
3.
Clin Cancer Res ; 18(17): 4806-19, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22761467

RESUMO

PURPOSE: This phase I study assessed the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), safety, pharmacokinetics, pharmacodynamics, and clinical activity of the first-in-class dual MEK/RAF inhibitor, RO5126766. EXPERIMENTAL DESIGN: Initial dose-escalation was conducted using once daily dosing over 28 consecutive days in 4-week cycles. Further escalation was completed using 2 intermittent dosing schedules [7 days on treatment followed by 7 days off (7on/7off); 4 days on treatment followed by 3 days off (4on/3off)]. RESULTS: Fifty-two patients received RO5126766 at doses of 0.1 to 2.7 mg once daily, 2.7 to 4.0 mg (4 on/3 off), or 2.7 to 5.0 mg (7 on/7 off). The most common DLTs were elevated creatine phosphokinase (CPK) and blurred vision. The MTD for each dosing schedule was 2.25 mg once daily, 4.0 mg (4 on/3 off), and 2.7 mg (7 on/7 off). The dose/schedule recommended for phase II (RP2D) investigation was 2.7 mg (4 on/3 off). Frequent adverse events included rash-related disorders (94.2%), elevated CPK (55.8%), and diarrhea (51.9%). C(max) occurred 1 to 2 hours after dosing and mean terminal half-life was approximately 60 hours. Pharmacodynamic changes included reduced ERK phosphorylation, an increase in apoptosis in tumor tissue, and a reduction in fluorodeoxyglucose (FDG) uptake after 15 days of dosing. Three partial responses were seen: two in BRAF-mutant melanoma tumors and one in an NRAS-mutant melanoma. CONCLUSION: This first-in-human study shows that oral RO5126766 has manageable toxicity, a favorable pharmacokinetic/pharmacodynamic profile, and encouraging preliminary antitumor activity in this population of heavily pretreated patients, achieving tumor shrinkage in around 40% of patients across all dose levels and all tumor types.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Administração Oral , Adulto , Idoso , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Resultado do Tratamento
4.
Clin Cancer Res ; 18(17): 4794-805, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22767668

RESUMO

PURPOSE: This phase I study of the mitogen-activated protein/extracellular signal-regulated kinase inhibitor RO4987655 (CH4987655) assessed its maximum tolerated dose (MTD), dose-limiting toxicities (DLT), safety, pharmacokinetic/pharmacodynamic profile, and antitumor activity in patients with advanced solid tumors. PATIENTS AND METHODS: An initial dose escalation was conducted using a once-daily dosing schedule, with oral RO4987655 administered at doses of 1.0 to 2.5 mg once daily over 28 consecutive days in 4-week cycles. Doses were then escalated from 3.0 to 21.0 mg [total daily dose (TDD)] using a twice-daily dosing schedule. RESULTS: Forty-nine patients were enrolled. DLTs were blurred vision (n = 1) and elevated creatine phosphokinase (n = 3). The MTD was 8.5 mg twice daily (TDD, 17.0 mg). Rash-related toxicity (91.8%) and gastrointestinal disorders (69.4%) were the most frequent adverse events. The pharmacokinetic profile of RO4987655 showed dose linearity and a half-life of approximately 4 hours. At the MTD, target inhibition, assessed by suppression of extracellular signal-regulated kinase phosphorylation in peripheral blood mononuclear cells, was high (mean 75%) and sustained (90% of time >IC(50)). Of the patients evaluable for response, clinical benefit was seen in 21.1%, including two partial responses (one confirmed and one unconfirmed). 79.4% of patients showed a reduction in fluorodeoxyglucose uptake by positron emission tomography between baseline and day 15. CONCLUSION: In this population of heavily pretreated patients, oral RO4987655 showed manageable toxicity, a favorable pharmacokinetics/pharmacodynamics profile, and promising preliminary antitumor activity, which has been further investigated in specific populations of patients with RAS and/or RAF mutation driven tumors.


Assuntos
Benzamidas , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Oxazinas , Inibidores de Proteínas Quinases , Administração Oral , Adulto , Idoso , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Benzamidas/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/patologia , Oxazinas/administração & dosagem , Oxazinas/efeitos adversos , Oxazinas/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA