Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139756

RESUMO

Implantable electrodes represent a groundbreaking advancement in nervous system research, providing a pivotal tool for recording and stimulating human neural activity. This capability is integral for unraveling the intricacies of the nervous system's functionality and for devising innovative treatments for various neurological disorders. Implantable electrodes offer distinct advantages compared to conventional recording and stimulating neural activity methods. They deliver heightened precision, fewer associated side effects, and the ability to gather data from diverse neural sources. Crucially, the development of implantable electrodes necessitates key attributes: flexibility, stability, and high resolution. Graphene emerges as a highly promising material for fabricating such electrodes due to its exceptional properties. It boasts remarkable flexibility, ensuring seamless integration with the complex and contoured surfaces of neural tissues. Additionally, graphene exhibits low electrical resistance, enabling efficient transmission of neural signals. Its transparency further extends its utility, facilitating compatibility with various imaging techniques and optogenetics. This paper showcases noteworthy endeavors in utilizing graphene in its pure form and as composites to create and deploy implantable devices tailored for neural recordings and stimulations. It underscores the potential for significant advancements in this field. Furthermore, this paper delves into prospective avenues for refining existing graphene-based electrodes, enhancing their suitability for neural recording applications in in vitro and in vivo settings. These future steps promise to revolutionize further our capacity to understand and interact with the neural research landscape.


Assuntos
Grafite , Humanos , Estudos Prospectivos , Eletrodos Implantados , Eletrodos , Sistema Nervoso
2.
Food Funct ; 14(16): 7672-7681, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37540108

RESUMO

Lychee pulp phenolics possess excellent biological activities, however, changes in phenolic substances after microbial treatments are unknown. Herein, lychee pulp was fermented by Lactobacillus plantarum, Lactobacillus rhamnosus, and a mixed strain of the two, followed by an investigation of the products' colonic fermentation. In comparison to single-strain fermentation, mixed-strain fermentation significantly increased catechin and quercetin. In addition, lychee phenolics fermented by mixed strains were more conducive to the growth of gut microbiota. The results of HPLC-DAD showed that colonic fermentation further promoted the release of lychee phenolics. There was a notable increase in the content of gallic acid and quercetin, while multiple phenolics were degraded. Quercetin-3-O-rutinose-7-O-α-L-rhamnoside (QRR) and rutin were catabolized into quercetin by gut microbiota, and 4-hydroxybenzoic acid was produced from the metabolism of QRR and procyanidin B2. Lychee phenolics fermented by mixed lactic acid bacteria were easily metabolized and transformed by gut microbiota. These findings indicate that lychee pulp fermented by mixed lactic acid bacteria possesses probiotic potential, which is of great significance for the development of functional probiotic products.

3.
Sensors (Basel) ; 23(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299934

RESUMO

As the global population grows, and urbanization becomes more prevalent, cities often struggle to provide convenient, secure, and sustainable lifestyles due to the lack of necessary smart technologies. Fortunately, the Internet of Things (IoT) has emerged as a solution to this challenge by connecting physical objects using electronics, sensors, software, and communication networks. This has transformed smart city infrastructures, introducing various technologies that enhance sustainability, productivity, and comfort for urban dwellers. By leveraging Artificial Intelligence (AI) to analyze the vast amount of IoT data available, new opportunities are emerging to design and manage futuristic smart cities. In this review article, we provide an overview of smart cities, defining their characteristics and exploring the architecture of IoT. A detailed analysis of various wireless communication technologies employed in smart city applications is presented, with extensive research conducted to determine the most appropriate communication technologies for specific use cases. The article also sheds light on different AI algorithms and their suitability for smart city applications. Furthermore, the integration of IoT and AI in smart city scenarios is discussed, emphasizing the potential contributions of 5G networks coupled with AI in advancing modern urban environments. This article contributes to the existing literature by highlighting the tremendous opportunities presented by integrating IoT and AI, paving the way for the development of smart cities that significantly enhance the quality of life for urban dwellers while promoting sustainability and productivity. By exploring the potential of IoT, AI, and their integration, this review article provides valuable insights into the future of smart cities, demonstrating how these technologies can positively impact urban environments and the well-being of their inhabitants.


Assuntos
Inteligência Artificial , Qualidade de Vida , Cidades , Software , Algoritmos
4.
Biosensors (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37366944

RESUMO

There is a constant need to maintain the quality of consumed food. In retrospect to the recent pandemic and other food-related problems, scientists have focused on the numbers of microorganisms that are present in different food items. As a result of changes in certain environmental factors such as temperature and humidity, there is a constant risk for the growth of harmful microorganisms, such as bacteria and fungi, in consumed food. This questions the edibility of the food items, and constant monitoring to avoid food poisoning-related diseases is required. Among the different nanomaterials used to develop sensors to detect microorganisms, graphene has been one of the primary materials due to its exceptional electromechanical properties. Graphene sensors are able to detect microorganisms in both a composite and non-composite manner, due to their excellent electrochemical characteristics such as their high aspect ratios, excellent charge transfer capacity and high electron mobility. The paper depicts the fabrication of some of these graphene-based sensors, and their utilization to detect bacteria, fungi and other microorganisms that are present in very small amounts in different food items. In addition to the classified manner of the graphene-based sensors, this paper also depicts some of the challenges that exist in current scenarios, and their possible remedies.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Grafite/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química
5.
Food Chem ; 398: 133878, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964559

RESUMO

In this study, novel bioavailable selenium nanoparticles with controllable particle size and low toxicity were developed. With selenium modified zein nanoparticles (zein NPs) in-situ, dispersed nano-selenium particles with different structure were formed simultaneously. The particle size, zeta potential, morphology and binding mechanism of synthesized zein-selenium nanoparticles (zein-Se NPs) were systematically discussed. Selenium was considered to be combined with OH and -CO-NH- groups of zein. The selenium in the complex particles presented an amorphous structure with zero valence. The cytotoxicity of zein-Se NPs was significantly lower than that of sodium selenite, even exhibited a growth-promoting effect on normal liver cells (L-02), and were proven to be orally absorbed by organisms in vivo experiments. The difference in particle structure had certain effects on cytotoxicity and oral targeting. The complex particles obtained by this method were anticipated be further used as food fortifiers or medicines.


Assuntos
Nanopartículas , Selênio , Zeína , Disponibilidade Biológica , Tamanho Celular , Nanopartículas/química , Tamanho da Partícula , Selênio/química , Zeína/química
6.
Biosensors (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421162

RESUMO

Chronic implantation of an epidural Electrocorticography (ECoG) electrode produces thickening of the dura mater and proliferation of the fibrosis around the interface sites, which is a significant concern for chronic neural ECoG recording applications used to monitor various neurodegenerative diseases. This study describes a new approach to developing a slippery liquid-infused porous surface (SLIPS) on the flexible ECoG electrode for a chronic neural interface with the advantage of increased cell adhesion. In the demonstration, the electrode was fabricated on the polyimide (PI) substrate, and platinum (Pt)-gray was used for creating the porous nanocone structure for infusing the silicone oil. The combination of nanocone and the infused slippery oil layer created the SLIPS coating, which has a low impedance (4.68 kΩ) level favourable for neural recording applications. The electrochemical impedance spectroscopy and equivalent circuit modelling also showed the effect of the coating on the recording site. The cytotoxicity study demonstrated that the coating does not have any cytotoxic potentiality; hence, it is biocompatible for human implantation. The in vivo (acute recording) neural recording on the rat model also confirmed that the noise level could be reduced significantly (nearly 50%) and is helpful for chronic ECoG recording for more extended neural signal recording applications.


Assuntos
Eletrocorticografia , Polímeros , Animais , Ratos , Humanos , Eletrodos Implantados , Polímeros/química , Sistema Nervoso , Platina
7.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234412

RESUMO

The advent of nanotechnology has initiated a profound revolution in almost all spheres of technology. The electronics industry is concerned with the ongoing miniaturization of devices and as such requires packaging technologies that will make the devices more compact and resilient. 3D packaging, system in package, and system on chip are the various packaging techniques that utilize nanoscale components for their implementation. The active components of the ICs have kept pace with Moore's law, but the passive components have proven an impediment in the race for miniaturization. Moreover, the toxic effects and nano-scale problems associated with conventional soldering techniques have entailed the active involvement of nanotechnology in the search for answers. Recent advances in these fields and the diverse nanomaterials which are being employed to resolve these issues have been discussed in detail.

8.
Biosensors (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884353

RESUMO

The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Animais , Técnicas Biossensoriais/métodos , Ecossistema , Técnicas Eletroquímicas , Qualidade da Água
9.
Materials (Basel) ; 15(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806631

RESUMO

The paper presents the use of surfactant-induced MWCNTs/PDMS-based nanocomposites for tactile sensing applications. The significance of nanocomposites-based sensors has constantly been growing due to their enhanced electromechanical characteristics. As a result of the simplified customization for their target applications, research is ongoing to determine the quality and quantity of the precursor materials that are involved in the fabrication of nanocomposites. Although a significant amount of work has been done to develop a wide range of nanocomposite-based prototypes, they still require optimization when mixed with polydimethylsiloxane (PDMS) matrices. Multi-Walled Carbon Nanotubes (MWCNTs) are one of the pioneering materials used in multifunctional sensing applications due to their high yield, excellent electrical conductivity and mechanical properties, and high structural integrity. Among the other carbon allotropes used to form nanocomposites, MWCNTs have been widely studied due to their enhanced bonding with the polymer matrix, highly densified sampling, and even surfacing throughout the composites. This paper highlights the development, characterization and implementation of surfactant-added MWCNTs/PDMS-based nanocomposites. The prototypes consisted of an optimized amount of sodium dodecyl sulfonate (SDS) and MWCNTs mixed as nanofillers in the PDMS matrix. The results have been promising in terms of their mechanical behaviour as they responded well to a maximum strain of 40%. Stable and repeatable output was obtained with a response time of 1 millisecond. The Young's Modulus of the sensors was 2.06 MPa. The utilization of the prototypes for low-pressure tactile sensing applications is also shown here.

10.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890817

RESUMO

This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.


Assuntos
Dispositivos Eletrônicos Vestíveis , Atenção à Saúde
11.
J Food Sci ; 87(7): 3026-3035, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638338

RESUMO

The reducing flavor of whole grain bread has been constantly affecting the consumption desire of a significant proportion of consumers. The study presents the use of lychee pulp pomace (LPP) powder to replace certain proportion of wheat flour and produce wheat bread with better quality, while having minimal effects on the volume and improving the nutritional quality. Distinct particle sizes (60-400 µm) of LPP powder were obtained by superfine or ordinary grinding. Effect of different additive proportions (7-19%) of LPP powder on bread dough quality were studied by constrained mixture designs. The volume of fermented doughs subsequently decreased after adding LPP powder. However, LPP powders with smaller particle sizes were able to minimize this effect due to its higher water-holding capacity. The analyses of gluten network showed that smaller particle sizes of LPP powder resulted in a decrease in surface hydrophobicity and increase in the elasticity and stability of gluten network. Finally, optimum mixture formula was composed of 16% LPP powder with 60 µm particle size and 15% water. The study illustrated the potential to make high-quality bread with small particle size of LPP powder. PRACTICAL APPLICATION: The addition of dietary fiber to wheat flour can adversely affect the dough volume and reduce the dough quality. By reducing the particle size of lychee pulp pomace powder, this adverse effect could be minimized while increasing the content of dietary fiber and bound phenolics in the dough. This provides data for the production of high-quality lychee dough bread.


Assuntos
Pão , Litchi , Fibras na Dieta , Farinha , Glutens , Tamanho da Partícula , Pós , Triticum , Água
12.
Food Chem ; 391: 133286, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640344

RESUMO

The paper presents the positive effect of soybean polypeptides (SP) on the stability and the potential hypolipidemic effect of selenium nanoparticles (SeNPs). After preparing SeNPs, SP with different molecular weight were introduced to stabilize SeNPs. We found that the SP with molecular weight >10 kDa (SP5) had the best stabilizing effect on SeNPs. We inferred that the steric resistance resulting from the long chains of SP5 protected SeNPs from collision-mediated aggregation, and the electrostatic repulsions between SP5 and SeNPs also played a positive role in stabilizing SeNPs. The as-prepared SP5-SeNPs were spherical, amorphous and zero valent. It was proved that SeNPs were bound with SP5 through O- and N- groups in SP5, and the main forces were hydrogen bonds and van der Waals forces. The bile salts binding assay showed that the SP5-SeNPs exhibited a high binding capacity to bile salts, which indicated their potential in hypolipidemic application.


Assuntos
Nanopartículas , Selênio , Ácidos e Sais Biliares , Nanopartículas/química , Peptídeos , Selênio/química , Glycine max
13.
J Sci Food Agric ; 102(13): 5729-5737, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35396741

RESUMO

BACKGROUND: The bioavailability of curcumin (Cur) is generally limited by its poor stability. However, it is beneficial to improve the stability of Cur by using self-assembled zein hydrolysate (ZH) as delivery carrier. This paper aimed to explore the formation mechanism of zein hydrolysate-curcumin nanocomplexes as a function of critical micelle concentration (CMC). RESULTS: In this work, The CMC of ZH (0.535 mg mL-1 ) was obtained by the pyrene fluorescent probe method. ZH-Cur nanocomplexes undergo hydrogen bonding and hydrophobic interactions, and the fluorescence quenching effect was concentration dependent with the process of static quenching. Moreover, the differences of colloidal properties on ZH and ZH-Cur nanocomplexes were systematically compared by dynamic light scattering and scanning electron microscopy near CMC. ZH presented irregular spherical shapes and would aggregate to form micelles at the CMC and above. The tight micellar structure promoted more uniform size distribution (double peaks reduced) and higher potentials (over -30 mV) within 10 days. In addition, the nanocomplexes demonstrated an obvious core-shell structure. Within 10 days of storage, the particle size distributions were uniform and the potentials increased significantly, indicating that the micellar nanostructure made the Cur stably embedded in the hydrophobic core of ZH. Finally, ZH-Cur nanocomplexes effectively improved the water solubility and encapsulation rate (over 70%) of Cur. Moreover, over 90% of Cur was released steadily within 91 h. CONCLUSION: This work provided a theoretical basis for the application of amphiphilic peptide micellar nanostructure as novel food-grade nanocarriers to transport hydrophobic bioactive substances. © 2022 Society of Chemical Industry.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Zeína , Curcumina/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nanopartículas/química , Tamanho da Partícula , Zeína/química
14.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335764

RESUMO

This paper presents a substantial review of the fabrication and implementation of graphene-PDMS-based composites for wearable sensing applications. Graphene is a pivotal nanomaterial which is increasingly being used to develop multifunctional sensors due to their enhanced electrical, mechanical, and thermal characteristics. It has been able to generate devices with excellent performances in terms of sensitivity and longevity. Among the polymers, polydimethylsiloxane (PDMS) has been one of the most common ones that has been used in biomedical applications. Certain attributes, such as biocompatibility and the hydrophobic nature of PDMS, have led the researchers to conjugate it in graphene sensors as substrates or a polymer matrix. The use of these graphene/PDMS-based sensors for wearable sensing applications has been highlighted here. Different kinds of electrochemical and strain-sensing applications have been carried out to detect the physiological signals and parameters of the human body. These prototypes have been classified based on the physical nature of graphene used to formulate the sensors. Finally, the current challenges and future perspectives of these graphene/PDMS-based wearable sensors are explained in the final part of the paper.

15.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883879

RESUMO

Wearable smart devices are widely used to determine various physico-mechanical parameters at chosen intervals. The proliferation of such devices has been driven by the acceptance of enhanced technology in society [...].


Assuntos
Dispositivos Eletrônicos Vestíveis
16.
Sensors (Basel) ; 21(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064254

RESUMO

This paper presents a comprehensive review of the detection of aflatoxin compounds using carbon allotrope-based sensors. Although aflatoxin M1 and its derivative aflatoxin B1 compounds have been primarily found in milk and other food products, their presence above a threshold concentration causes disastrous health-related anomalies in human beings, such as growth impairment, underweight and even carcinogenic and immunosuppressive effects. Among the many sensors developed to detect the presence of these compounds, the employment of certain carbon allotropes, such as carbon nanotubes (CNTs) and graphene, has been highly preferred due to their enhanced electromechanical properties. These conductive nanomaterials have shown excellent quantitative performance in terms of sensitivity and selectivity for the chosen aflatoxin compounds. This paper elucidates some of the significant examples of the CNTs and graphene-based sensors measuring Aflatoxin M1 (ATM1) and Aflatoxin B1 (AFB1) compounds at low concentrations. The fabrication technique and performance of each of the sensors are shown here, as well as some of the challenges existing with the current sensors.


Assuntos
Grafite , Nanotubos de Carbono , Aflatoxina B1/análise , Aflatoxina M1/análise , Animais , Contaminação de Alimentos/análise , Humanos , Leite/química
17.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923790

RESUMO

This paper deals with recent progress in the use of laser-induced graphene sensors for the electrochemical detection of glucose molecules. The exponential increase in the exploitation of the laser induction technique to generate porous graphene from polymeric and other naturally occurring materials has provided a podium for researchers to fabricate flexible sensors with high dynamicity. These sensors have been employed largely for electrochemical applications due to their distinct advantages like high customization in their structural dimensions, enhanced characteristics and easy roll-to-roll production. These laser-induced graphene (LIG)-based sensors have been employed for a wide range of sensorial applications, including detection of ions at varying concentrations. Among the many pivotal electrochemical uses in the biomedical sector, the use of these prototypes to monitor the concentration of glucose molecules is constantly increasing due to the essentiality of the presence of these molecules at specific concentrations in the human body. This paper shows a categorical classification of the various uses of these sensors based on the type of materials involved in the fabrication of sensors. The first category constitutes examples where the electrodes have been functionalized with various forms of copper and other types of metallic nanomaterials. The second category includes other miscellaneous forms where the use of both pure and composite forms of LIG-based sensors has been shown. Finally, the paper concludes with some of the possible measures that can be taken to enhance the use of this technique to generate optimized sensing prototypes for a wider range of applications.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Glucose , Humanos , Lasers
18.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794513

RESUMO

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

19.
Sensors (Basel) ; 21(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578782

RESUMO

The use of multi-walled carbon nanotube (MWCNT)-based sensors for strain-strain applications is showcased in this paper. Extensive use of MWCNTs has been done for the fabrication and implementation of flexible sensors due to their enhanced electrical, mechanical, and thermal properties. These nanotubes have been deployed both in pure and composite forms for obtaining highly efficient sensors in terms of sensitivity, robustness, and longevity. Among the wide range of applications that MWCNTs have been exploited for, strain-sensing has been one of the most popular ones due to the high mechanical flexibility of these carbon allotropes. The MWCNT-based sensors have been able to deduce a broad spectrum of macro- and micro-scaled tensions through structural changes. This paper highlights some of the well-approved conjugations of MWCNTs with different kinds of polymers and other conductive nanomaterials to form the electrodes of the strain sensors. It also underlines some of the measures that can be taken in the future to improve the quality of these MWCNT-based sensors for strain-related applications.

20.
J Agric Food Chem ; 69(1): 483-490, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33370528

RESUMO

In this study, a novel Zn-binding peptide, Lys-Tyr-Lys-Arg-Gln-Arg-Trp (KYKRQRW), was purified and identified from soy protein isolate hydrolysates (SPIHs). The Zn-binding peptide exhibited improved Zn-binding capacity (83.21 ± 2.65%) than SPIH solutions. CD, NMR, and Fourier transform infrared spectroscopy were used to confirm the complexation between Zn and the peptide. The results showed that the Zn-binding peptide formed a folding structure with part of the ß-sheet (29.3-13.4%) turning into random coils (41.7-57.6%) during complexation. It was further proved that the binding sites were located at the oxygen atoms on the carboxyl group of the Trp side chain and nitrogen atoms on the amino group of the Lys side chain. Moreover, the Zn-peptide complex exhibited increased solubility than ZnSO4 during simulated gastrointestinal digestion. This study highlighted that the novel soy peptide possessed a strong zinc chelate rate and had a positive effect on the gastrointestinal stability of Zn which could be utilized as a functional ingredient in future.


Assuntos
Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas de Soja/química , Zinco/química , Digestão , Ligação Proteica , Hidrolisados de Proteína/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA