Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Rep ; 14(1): 21815, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294189

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected or isolated from domestic cats. It is unclear whether cats play an important role in the SARS-CoV-2 transmission cycle. In this study, we examined the susceptibility of cats to SARS-CoV-2, including wild type and variants, by animal experiments. Cats inoculated with wild type, gamma, and delta variants secreted a large amount of SARS-CoV-2 for 1 week after the inoculation from nasal, oropharyngeal, and rectal routes. Only 100 TCID50 of virus could infect cats and replicate well without severe clinical symptoms. In addition, one cat inoculated with wild type showed persistent virus secretion in feces for over 28 days post-inoculation (dpi). The titer of virus-neutralizing (VN) antibodies against SARS-CoV-2 increased from 11 dpi, reaching a peak at 14 dpi. However, the omicron variant could not replicate well in cat tissues and induced a lower titer of VN antibodies. It is concluded that cats were highly susceptible to SARS-CoV-2 infection, but not to the Omicron Variant, which caused the attenuated pathogenicity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Gatos , Animais , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/veterinária , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Doenças do Gato/virologia , Fezes/virologia , Feminino
2.
One Health ; 19: 100870, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39206254

RESUMO

There have been reports of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to various mammalian species. Some infected animals show clinical signs and may even die in rare cases. Outbreaks of SARS-CoV-2 have been reported in zoos where susceptible animals are bred in high population densities. However, there have been few reports of omicron variant outbreaks in zoo animals. From late 2022 to 2023, an outbreak of the SARS-CoV-2 omicron variant occurred in one Japanese zoo. A total of 24 lions were housed in the zoo; 13 of them showed respiratory symptoms, and the three oldest lions died. Molecular and histopathological analyses revealed that the deceased lions were infected with SARS-CoV-2 omicron BF.7.15. Virus-neutralization tests showed that all 21 lions were positive for antibodies against the omicron variant, but not against the delta variant. In addition, three tigers and one bear in the same or neighboring building as the lions possessed antibodies against the omicron variant. This is a very rare report on the outbreak of a SARS-CoV-2 omicron variant infection that resulted in the death of animals. This finding demonstrates the importance of continuous countermeasures to protect non-vaccinated animals from SARS-CoV-2 infection.

3.
Front Microbiol ; 15: 1367672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550855

RESUMO

Introduction: Severe dengue is thought to be caused by an excessive host immune response. Methods: To study the pathogenesis of severe dengue, we developed a novel model using LysM Cre+Ifnarflox/flox mice carrying depleted Ifnar expression only in subsets of murine myeloid cells. Results: Although dengue virus (DENV) clinical isolates were not virulent in LysM Cre+Ifnarflox/flox mice, mouse-adapted DV1-5P7Sp and DV3P12/08P4Bm, which were obtained by passaging the spleen or bone marrow of mice, demonstrated 100% lethality with severe vascular leakage in the liver and small intestine. DV1-5P7Sp and DV3P12/08P4Bm harbored five and seven amino acid substitutions, respectively. Infection also induced neutrophil infiltration in the small intestine, and increased expression of IL-6 and MMP-8 and blockade of TNF-α signaling protected the mice, as demonstrated in a previous severe dengue mouse model using C57/BL6 mice lacking both IFN-α/ß and IFN-γ receptors. Notably, the new models with DV1-5P7Sp and DV3P12/08P4Bm showed an increased proliferative capacity of the adapted viruses in the thymus and bone marrow. Discussion: These observations suggest that myeloid cell infection is sufficient to trigger cytokine storm-induced vascular leakage. This model can refine the factors involved in the pathology of severe dengue leading to vascular leakage.

4.
NEJM Evid ; 3(3): EVIDoa2300290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411447

RESUMO

BACKGROUND: Vaccination against mpox (formerly known as monkeypox), an infectious disease caused by the monkeypox virus (MPXV), is needed to prevent outbreaks and consequent public health concerns. The LC16m8 vaccine, a dried cell-cultured proliferative live attenuated vaccinia virus­based vaccine, was approved in Japan against smallpox and mpox. However, its immunogenicity and efficacy against MPXV have not been fully assessed. We assessed the safety and immunogenicity of LC16m8 against MPXV in healthy adults. METHODS: We conducted a single-arm study that included 50 participants who were followed up for 168 days postvaccination. The primary end point was the neutralizing antibody seroconversion rate against MPXVs, including the Zr599 and Liberia strains, on day 28. The secondary end points included the vaccine "take" (major cutaneous reaction) rate, neutralizing titer kinetics against MPXV and vaccinia virus (LC16m8) strains, and safety outcomes. RESULTS: Seroconversion rates on day 28 were 72% (36 of 50), 70% (35 of 50), and 88% (44 of 50) against the Zr599 strain, the Liberia strain, and LC16m8, respectively. On day 168, seroconversion rates decreased to 30% (15 of 50) against the Zr599 and Liberia strains and to 76% (38 of 50) against LC16m8. The vaccine "take" (broad definition) rate on day 14 was 94% (46 of 49). Adverse events (AEs), including common solicited cutaneous reactions, occurred in 98% (45 of 48) of participants; grade 3 severity AEs occurred in 16% (8 of 50). No deaths, serious AEs, or mpox onset incidences were observed up to day 168. CONCLUSIONS: The LC16m8 vaccine generated neutralizing antibody responses against MPXV in healthy adults. No serious safety concerns occurred with LC16m8 use. (Funded by the Ministry of Health, Labour and Welfare of Japan; Japan Registry of Clinical Trials number, jRCTs031220171.)


Assuntos
Mpox , Vacina Antivariólica , Vacinas , Adulto , Humanos , Anticorpos Neutralizantes , Antígenos Virais
6.
Virus Res ; 340: 199301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
7.
PLoS Negl Trop Dis ; 17(11): e0011743, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939119

RESUMO

Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/ß and γ receptor knockout mice (IFN-α/ß/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/ß/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1ß, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.


Assuntos
Dengue , Viroses , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Camundongos Knockout , Linfócitos T/metabolismo , Intestino Delgado , Viroses/patologia
8.
Biochem Biophys Res Commun ; 673: 114-120, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37379800

RESUMO

SARS-CoV-2 nucleocapsid protein (NP) is the main target for COVID-19-diagnostic PCR and antigen rapid diagnostic tests (Ag-RDTs). Ag-RDTs are more convenient than PCR tests for point-of-care testing or self-testing to identify the SARS-CoV-2 antigen. The sensitivity and specificity of this method depends mainly on the affinity and specificity of NP-binding antibodies; therefore, antigen-antibody binding is key elements for the Ag-RDTs. Here, we applied the high-throughput antibody isolation platform that has been utilized to isolate therapeutic antibodies against rare epitopes. Two NP antibodies were identified to recognize non-overlapping epitopes with high affinity. One antibody specifically binds to SARS-CoV-2 NP, and the other rapidly and tightly binds to SARS-CoV-2 NP with cross-reactivity to SARS-CoV NP. Furthermore, these antibodies were compatible with a sandwich enzyme-linked immunosorbent assay that exhibited enhanced sensitivity for NP detection compared to the previously isolated NP antibodies. Thus, the NP antibody pair is applicable to more sensitive and specific Ag-RDTs, highlighting the utility of a high-throughput antibody isolation platform for diagnostics development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Nucleocapsídeo , Anticorpos Antivirais , Epitopos , Sensibilidade e Especificidade
9.
iScience ; 26(5): 106694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124417

RESUMO

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

10.
Glob Health Med ; 5(1): 5-14, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36865900

RESUMO

As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.

11.
J Virol ; 97(1): e0136622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633406

RESUMO

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2. IMPORTANCE The emergence of SARS-CoV-2 variants and the widespread use of COVID-19 vaccines has resulted in individual differences in immune status against SARS-CoV-2. A decay in immunity over time and the emergence of variants that partially evade the immune response can also lead to reinfection. In this study, we demonstrated that, in hamsters, immunity acquired following primary infection with previous SARS-CoV-2 variants was effective in preventing the onset of pneumonia after reinfection with the Omicron variant. However, viral infection and multiplication in the upper respiratory tract were still observed after reinfection. We also showed that more diverse nonsynonymous mutations appeared in the upper respiratory tract of reinfected hamsters that had acquired immunity from primary infection. This hamster model reveals the within-host evolution of SARS-CoV-2 and its pathology after reinfection, and provides important information for countermeasures against diversifying SARS-CoV-2 variants.


Assuntos
COVID-19 , Reinfecção , Animais , Cricetinae , Mesocricetus , RNA Viral , SARS-CoV-2/genética
12.
Vaccine ; 41(11): 1834-1847, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36572603

RESUMO

BACKGROUND: In early 2020, developing vaccines was an urgent need for preventing COVID-19 from a contingency perspective. METHODS: S-268019-a is a recombinant protein-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprising a modified recombinant spike protein antigen adjuvanted with agatolimod sodium, a Toll-like receptor-9 agonist. In the preclinical phase, it was administered intramuscularly twice at a 2-week interval in 7-week-old mice. Immunogenicity was assessed, and the mice were challenged intranasally with mouse-adapted SARS-CoV-2 at 2 and 8 weeks, respectively, after the second immunization. After confirming the preclinical effect, a Phase 1/2, randomized, parallel-group clinical study was conducted in healthy adults (aged 20-64 years). All participants received 2 intramuscular injections at various combinations of the antigen and the adjuvant (S-910823/agatolimod sodium, in µg: 12.5/250, 25/250, 50/250, 25/500, 50/500, 100/500, 10/500, 100/100, 200/1000) or placebo (saline) in an equivalent volume at a 3-week interval and were followed up until Day 50 in this interim analysis. RESULTS: In the preclinical studies, S-268019-a was safe and elicited robust immunoglobulin G (IgG) and neutralizing antibody responses in mice. When challenged with SARS-CoV-2, all S-268019-a-treated mice survived and maintained weight until 10 days, whereas all placebo- or adjuvant-treated (without antigen) mice died within 6 days. In the Phase 1/2 trial, although S-268019-a was well tolerated in adult participants, was safe up to Day 50, and elicited robust anti-spike protein IgG antibodies, it did not elicit sufficient neutralizing antibody levels. CONCLUSIONS: The S-268019-a vaccine was not sufficiently immunogenic in Japanese adults despite robust immunogenicity and efficacy in mice. Our results exemplify the innate challenges in translating preclinical data in animals to clinical trials, and highlight the need for continued research to overcome such barriers. (jRCT2051200092).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Método Duplo-Cego , População do Leste Asiático , Imunoglobulina G , SARS-CoV-2 , Sódio , Vacinas Sintéticas/imunologia
13.
Front Microbiol ; 14: 1333946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249467

RESUMO

Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods: Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results: In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion: These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.

14.
Sci Rep ; 12(1): 20861, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460696

RESUMO

Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunidade
15.
J Virol ; 96(23): e0149622, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36354341

RESUMO

Although hepatitis A virus (HAV) is associated only with acute hepatitis in humans, HAV RNA persists within the liver for months following resolution of liver inflammation and cessation of fecal virus shedding in chimpanzees and murine models of hepatitis A. Here, we confirm striking differences in the kinetics of HAV RNA clearance from liver versus serum and feces in infected Ifnar1-/- mice and investigate the nature of viral RNA persisting in the liver following normalization of serum alanine aminotransferase (ALT) levels. Fecal shedding of virus produced in hepatocytes declined >3,000-fold between its peak at day 14 and day 126, whereas intrahepatic HAV RNA declined only 32-fold by day 154. Viral RNA was identified within hepatocytes 3 to 4 months after inoculation and was associated with membranes, banding between 1.07 and 1.14 g/cm3 in isopycnic iodixanol gradients. Gradient fractions containing HAV RNA demonstrated no infectivity when inoculated into naive mice but contained neutralizing anti-HAV antibody. Depleting CD4+ or CD8+ T cells at this late point in infection had no effect on viral RNA abundance in the liver, whereas clodronate-liposome depletion of macrophages between days 110 and 120 postinoculation resulted in a striking recrudescence of fecal virus shedding and the reappearance of viral RNA in serum coupled with reductions in intra-hepatic Ifnγ, Tnfα, Ccl5, and other chemokine transcripts. Our data suggest that replication-competent HAV RNA persists for months within the liver in the presence of neutralizing antibody following resolution of acute hepatitis in Ifnar1-/- mice and that macrophages play a key role in viral control late in infection. IMPORTANCE HAV RNA persists in the liver of infected chimpanzees and interferon receptor-deficient Ifnar1-/- mice for many months after neutralizing antibodies appear, virus has been cleared from the blood, and fecal virus shedding has terminated. Here, we show this viral RNA is located within hepatocytes and that the depletion of macrophages months after the resolution of hepatic inflammation restores fecal virus shedding and circulating viral RNA. Our study identifies an important role for macrophages in virus control following resolution of acute hepatitis A in Ifnar1-/- mice and may have relevance to relapsing hepatitis A in humans.


Assuntos
Vírus da Hepatite A , Hepatite A , Macrófagos , Eliminação de Partículas Virais , Animais , Camundongos , Linfócitos T CD8-Positivos , Fezes , Vírus da Hepatite A/fisiologia , Inflamação , Macrófagos/virologia , Receptor de Interferon alfa e beta/genética , RNA Viral/genética , Camundongos Knockout
16.
Nat Commun ; 13(1): 6100, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243815

RESUMO

In cultured cells, SARS-CoV-2 infects cells via multiple pathways using different host proteases. Recent studies have shown that the furin and TMPRSS2 (furin/TMPRSS2)-dependent pathway plays a minor role in infection of the Omicron variant. Here, we confirm that Omicron uses the furin/TMPRSS2-dependent pathway inefficiently and enters cells mainly using the cathepsin-dependent endocytosis pathway in TMPRSS2-expressing VeroE6/TMPRSS2 and Calu-3 cells. This is the case despite efficient cleavage of the spike protein of Omicron. However, in the airways of TMPRSS2-knockout mice, Omicron infection is significantly reduced. We furthermore show that propagation of the mouse-adapted SARS-CoV-2 QHmusX strain and human clinical isolates of Beta and Gamma is reduced in TMPRSS2-knockout mice. Therefore, the Omicron variant isn't an exception in using TMPRSS2 in vivo, and analysis with TMPRSS2-knockout mice is important when evaluating SARS-CoV-2 variants. In conclusion, this study shows that TMPRSS2 is critically important for SARS-CoV-2 infection of murine airways, including the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Catepsinas , Furina/genética , Furina/metabolismo , Camundongos Knockout , Peptídeo Hidrolases , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
17.
Vaccine ; 40(41): 5892-5903, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36064667

RESUMO

To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Administração Intranasal , Compostos de Alúmen , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina A Secretora , Imunoglobulina G , Pulmão , Camundongos , Oligonucleotídeos , Glicoproteína da Espícula de Coronavírus , Vacinação
18.
J Virol ; 96(17): e0108322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993739

RESUMO

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.


Assuntos
Ebolavirus , Nucleocapsídeo , Fatores de Transcrição , Proteínas Virais , Montagem de Vírus , Transporte Biológico , Ebolavirus/química , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/biossíntese , Nucleocapsídeo/metabolismo , Fosforilação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
19.
Vaccine ; 40(31): 4231-4241, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35691872

RESUMO

The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/terapia , Imunização Passiva , Imunogenicidade da Vacina , Macaca fascicularis , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
20.
Immunohorizons ; 6(4): 275-282, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477682

RESUMO

Putative subcomponent vaccines of severe acute respiratory syndrome coronavirus spike protein and ARNAX (TLR3-specific adjuvant for priming dendritic cells) were examined and compared with spike protein + Alum in a mouse BALB/c model. Survival, body weight, virus-neutralizing Ab titer in the blood, and viral titer in the lung were evaluated for prognosis markers. The infiltration degrees of eosinophils in the lung were histopathologically monitored at 10 d postinfection. The results were: (1) adjuvant was essential in vaccines to achieve a complete recovery from infection, (2) ARNAX displayed optimal body weight recovery compared with Alum, (3) ARNAX was optimal for the amelioration of eosinophilic pneumonia, and (4) the eosinophil infiltration score was not associated with the neutralizing Ab titer in the blood or viral titer in the lung. Although the pathological link between the TLR3 vaccine and lung eosinophil infiltration remains unclear, severe acute respiratory syndrome-mediated eosinophilic pneumonia can be blocked by the prior induction of dendritic cell priming by ARNAX.


Assuntos
Eosinofilia Pulmonar , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Peso Corporal , Células Dendríticas , Modelos Animais de Doenças , Camundongos , Eosinofilia Pulmonar/prevenção & controle , Receptor 3 Toll-Like , Vacinas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA