Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474011

RESUMO

Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.


Assuntos
Genes Homeobox , Neoplasias Hematológicas , Humanos , Diferenciação Celular , Linhagem Celular , Células Mieloides/metabolismo , Células Dendríticas/metabolismo , Neoplasias Hematológicas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética
2.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391914

RESUMO

Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Mama/metabolismo , Proteínas de Transporte , Proteínas Mitocondriais/metabolismo
3.
Leuk Res ; 133: 107377, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647808

RESUMO

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a mature, CD30-positive T-cell lymphoma lacking expression of the anaplastic lymphoma kinase (ALK). In contrast to ALK-positive ALCL, BIA-ALCL cells express cyclin D2 (CCND2) which controls cyclin dependent kinases 4 and 6 (CDK4/6). DNA methylation and expression analyses performed with cell lines and primary cells suggest that the expression of CCND2 in BIA-ALCL cell lines conforms to the physiological status of differentiated T-cells, and that it is not the consequence of genomic alterations as observed in other hematopoietic tumors. Using cell line model systems we show that treatment with the CDK4/6 inhibitor palbociclib effects dephosphorylation of the retinoblastoma protein (RB) and causes cell cycle arrest in G1 in BIA-ALCL. Moreover, we show that the PI3K/AKT inhibitor BEZ-235 induces dephosphorylation of the mTORC1 target S6 and of GSK3ß, indicators for translational inhibition and proteasomal degradation. Consequently, CCND2 protein levels declined after stimulation with BEZ-235, RB was dephosphorylated and the cell cycle was arrested in G1. Taken together, our data imply potential application of CDK4/6 inhibitors and PI3K/AKT inhibitors for the therapy of BIA-ALCL.

4.
PLoS One ; 18(7): e0288031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428779

RESUMO

The human family of ETS transcription factors numbers 28 genes which control multiple aspects of development, notably the differentiation of blood and immune cells. Otherwise, aberrant expression of ETS genes is reportedly involved in forming leukemia and lymphoma. Here, we comprehensively mapped ETS gene activities in early hematopoiesis, lymphopoiesis and all mature types of lymphocytes using public datasets. We have termed the generated gene expression pattern lymphoid ETS-code. This code enabled identification of deregulated ETS genes in patients with lymphoid malignancies, revealing 12 aberrantly expressed members in Hodgkin lymphoma (HL). For one of these, ETS gene ETV3, expression in stem and progenitor cells in addition to that in developing and mature T-cells was mapped together with downregulation in B-cell differentiation. In contrast, subsets of HL patients aberrantly overexpressed ETV3, indicating oncogenic activity in this B-cell malignancy. Analysis of ETV3-overexpressing HL cell line SUP-HD1 demonstrated genomic duplication of the ETV3 locus at 1q23, GATA3 as mutual activator, and suppressed BMP-signalling as mutual downstream effect. Additional examination of the neighboring ETS genes ETS1 and FLI1 revealed physiological activities in B-cell development and aberrant downregulation in HL patient subsets. SUP-HD1 showed genomic loss on chromosome 11, del(11)(q22q25), targeting both ETS1 and FLI1, underlying their downregulation. Furthermore, in the same cell line we identified PBX1-mediated overexpression of RIOK2 which inhibited ETS1 and activated JAK2 expression. Collectively, we codified normal ETS gene activities in lymphopoiesis and identified oncogenic ETS members in HL.


Assuntos
Doença de Hodgkin , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Doença de Hodgkin/patologia , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-ets , Linhagem Celular , Proteína Proto-Oncogênica c-ets-1/genética
5.
Biomedicines ; 11(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371852

RESUMO

BCL2, BCL6 and MYC are major oncogenes in B-cell lymphoma. Their aberrant activation frequently occurs via chromosomal translocations which juxtapose light or heavy chain immunoglobulin (IG) genes to BCL2 and MYC or fuse diverse partner genes with BCL6. So-called double-hit lymphomas usually carry BCL2 and MYC rearrangements, while triple-hit lymphomas additionally bear BCL6-fusions. All these translocations are of diagnostic relevance and usually denote poor prognosis. Here, we genomically characterized classic follicular lymphoma (FL) cell line SC-1, thereby identifying t(14;18)(q32;q21) juxtaposing IGH and BCL2, t(8;14)(q24;q32) juxtaposing IGH and MYC, and t(3;3)(q25;q27) fusing MBNL1 to BCL6. In addition, we found that SC-1 carries a novel chromosomal rearrangement, t(14;17)(q32;q21), which, though present at establishment, has remained unreported until now. We further show that t(14;17)(q32;q21) juxtaposes IGH with the HOXB gene cluster at 17q21 and affect the oncogenic activation of both homeobox gene HOXB5 and neighboring micro-RNA gene miR10a. Moreover, we detected aberrant overexpression of HOXB5 in subsets of Burkitt lymphoma, FL, and multiple myeloma patients, confirming the clinical relevance of its deregulation. In SC-1, HOXB5 activation was additionally supported by co-expression of hematopoietic stem cell factor ZNF521, indicating an aberrant impact in cell differentiation. Functional investigations showed that HOXB5 represses the apoptotic driver BCL2L11 and promotes survival in the presence of etoposide, and that miR10a inhibits BCL6 and may thus play an oncogenic role in later stages of lymphomagenesis. Collectively, we characterize triple-hit B-cell line SC-1 and identify the aberrant expression of HOXB5 and miR10a, both novel oncogenes in B-cell lymphoma.

6.
Genes (Basel) ; 14(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36833225

RESUMO

IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Leucemia Mieloide Aguda/genética , Neoplasias Hematológicas/genética
7.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203204

RESUMO

T-box genes encode transcription factors, which control developmental processes and promote cancer if deregulated. Recently, we described the lymphoid TBX-code, which collates T-box gene activities in normal lymphopoiesis, enabling identification of members deregulated in lymphoid malignancies. Here, we have extended this analysis to cover myelopoiesis, compiling the myeloid TBX-code and, thus, highlighting which of these genes might be deregulated in myeloid tumor types. We analyzed public T-box gene expression datasets bioinformatically for normal and malignant cells. Candidate T-box-gene-expressing model cell lines were identified and examined by RQ-PCR, Western Blotting, genomic profiling, and siRNA-mediated knockdown combined with RNA-seq analysis and live-cell imaging. The established myeloid TBX-code comprised 10 T-box genes, including progenitor-cell-restricted TBX1. Accordingly, we detected aberrant expression of TBX1 in 10% of stem/progenitor-cell-derived chronic myeloid leukemia (CML) patients. The classic CML cell line K-562 expressed TBX1 at high levels and served as a model to identify TBX1 activators, including transcription factor GATA1 and genomic amplification of the TBX1 locus at 22q11; inhibitors, including BCR::ABL1 fusion and downregulated GNAI2, as well as BMP, FGF2, and WNT signaling; and the target genes CDKN1A, MIR17HG, NAV1, and TMEM38A. The establishment of the myeloid TBX-code permitted identification of aberrant TBX1 expression in subsets of CML patients and cell lines. TBX1 forms an integral part of an oncogenic regulatory network impacting proliferation, survival, and differentiation. Thus, the data spotlight novel diagnostic markers and potential therapeutic targets for this malignancy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Genes cdc , Western Blotting , Linhagem Celular Tumoral , Proteínas com Domínio T/genética
8.
J financ econ ; 143(1): 57-79, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36569793

RESUMO

In sharp contrast to most previous crisis episodes, the Treasury market experienced severe stress and illiquidity during the COVID-19 crisis, raising concerns that the safe-haven status of US Treasuries may be eroding. We document large shifts in Treasury ownership and temporary accumulation of Treasury and reverse repo positions on dealer balance sheets during this period. We build a dynamic equilibrium asset pricing model in which dealers subject to regulatory balance sheet constraints intermediate demand/supply shocks from habitat agents and provide repo financing to levered investors. The model predicts that Treasury inconvenience yields, measured as the spread between Treasuries and overnight-index swap rates (OIS), as well as spreads between dealers' reverse repo and repo rates, should be highly positive during the COVID-19 crisis, as is confirmed in the data. The same model framework, adapted to the institutional setting in 2007-2009, can also explain the negative Treasury-OIS spread observed during the Great Recession.

9.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233173

RESUMO

Homeobox genes encode transcription factors regulating basic developmental processes. They are arranged according to sequence similarities of their conserved homeobox in 11 classes, including TALE. Recently, we have reported the so-called TALE-code. This gene signature describes physiological expression patterns of all active TALE-class homeobox genes in the course of hematopoiesis. The TALE-code allows the evaluation of deregulated TALE homeobox genes in leukemia/lymphoma. Here, we extended the TALE-code to include the stages of pro-B-cells and pre-B-cells in early B-cell development. Detailed analysis of the complete lineage of B-cell differentiation revealed expression of TALE homeobox genes IRX1 and MEIS1 exclusively in pro-B-cells. Furthermore, we identified aberrant expression of IRX2, IRX3 and MEIS1 in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) which originates from early B-cell progenitors. The data showed correlated activities of deregulated TALE-class members with particular BCP-ALL subtype markers, namely IRX2 with TCF3/E2A-fusions, IRX3 with ETV6/TEL-fusions, and MEIS1 with KMT2A/MLL-fusions. These correlations were also detected in BCP-ALL cell lines which served as experimental models. We performed siRNA-mediated knockdown experiments and reporter gene assays to analyze regulatory connections. The results showed mutual activation of IRX1 and TCF3. In contrast, IRX2 directly repressed wild-type TCF3 while the fusion gene TCF3::PBX1 lost the binding site for IRX2 and remained unaltered. IRX3 mutually activated fusion gene ETV6::RUNX1 while activating itself by aberrantly expressed transcription factor KLF15. Finally, KMT2A activated MEIS1 which in turn supported the expression of IRX3. In summary, we revealed normal TALE homeobox gene expression in early B-cell development and identified aberrant activities of IRX2, IRX3 and MEIS1 in particular subtypes of BCP-ALL. Thus, these TALE homeobox genes may serve as novel diagnostic markers and therapeutic targets.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Meis1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Precursoras de Linfócitos B/patologia , RNA Interferente Pequeno
10.
F1000Res ; 11: 420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949917

RESUMO

Human and animal cell lines serve as model systems in a wide range of life sciences such as cancer and infection research or drug screening. Reproducible data are highly dependent on authenticated, contaminant-free cell lines, no better delivered than by the official and certified biorepositories. Offering a web portal to high-throughput information on these model systems will facilitate working with and comparing to these references by data otherwise dispersed at different sources. We here provide DSMZCellDive to access a comprehensive data source on human and animal cell lines, freely available at celldive.dsmz.de. A wide variety of data sources are generated such as RNA-seq transcriptome data and STR (short tandem repeats) profiles. Several starting points ease entering the database via browsing, searching or visualising. This web tool is designed for further expansion on meta and high-throughput data to be generated in future. Explicated examples for the power of this novel tool include analysis of B-cell differentiation markers, homeo-oncogene expression, and measurement of genomic loss of heterozygosities by an enlarged STR panel of 17 loci. Sharing the data on cell lines by the biorepository itself will be of benefit to the scientific community  since it (1) supports the selection of appropriate model cell lines, (2) ensures reliability, (3) avoids misleading data, (4) saves on additional experimentals, and (5) serves as reference for genomic and gene expression data.


Assuntos
Repetições de Microssatélites , Neoplasias , Animais , Linhagem Celular , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Transcriptoma
11.
Biomedicines ; 10(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009586

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a severe lymphoid malignancy with a worse prognosis lacking curative treatment regimens. Several gene mutations and deregulated pathways, including NFkB signaling, have been implicated in its pathogenesis. Accordingly, CTCL cell line HUT-78 reportedly contains mutated NFKB2, which is constitutively activated via partial gene deletion, also demonstrating that genomic rearrangements cause driving mutations in this malignancy. Here, along with HUT-78, we analyzed CTCL cell line HH to identify additional aberrations underlying gene deregulation. Karyotyping and genomic profiling of HH showed several rearrangements worthy of detailed investigation. Corresponding to the established karyotype, RNA-seq data and PCR analysis confirmed the presence of t(3;17)(q28;q25), generating a novel fusion gene, FOXK2::TP63. Furthermore, chromosomal rearrangement t(1;4)(p32;q25) was connected to amplification at 4q24-26, affecting aberrant NFKB1 overexpression thereat. Transcription factor binding-site analysis and knockdown experiments demonstrated that IRF4 contributed to NFKB1 expression. Within the same amplicon, we identified amplification and overexpression of NFkB signaling activator CAMK2D (4q26) and p53-inhibitor UBE2D3 (4q24). Genomic profiling data for HUT-78 detailed a deletion at 10q25 underlying reported NFKB2 activation. Moreover, amplifications of ID1 (20q11) and IKZF2 (2q34) in this cell line drove overexpression of these NK cell differentiation factors and possibly thus formed corresponding lineage characteristics. Target gene analysis for NFKB1 via siRNA-mediated knockdown in HH revealed activation of TP63, MIR155, and NOTCH pathway component RBPJ. Finally, treatment of HH with NFkB inhibitor demonstrated a role for NFkB in supporting proliferation, while usage of inhibitor DAPT showed significant survival effects via the NOTCH pathway. Collectively, our data suggest that NFkB and/or NOTCH inhibitors may represent reasonable treatment options for subsets of CTCL patients.

12.
Biomedicines ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35884913

RESUMO

STAT3 is a transcription factor which is activated via various signaling transduction pathways or Epstein-Barr virus (EBV) infection and plays an oncogenic role in lymphoid malignancies including Hodgkin lymphoma (HL). The tumor cells of HL are derived from germinal center B-cells and transformed by chromosomal rearrangements, aberrant signal transduction, deregulation of developmental transcription factors, and EBV activity. HL cell lines represent useful models to investigate molecular principles and deduced treatment options of this malignancy. Using cell line L-540, we have recently shown that constitutively activated STAT3 drives aberrant expression of hematopoietic NKL homeobox gene HLX. Here, we analyzed HL cell line AM-HLH which is EBV-positive but, nevertheless, HLX-negative. Consistently, AM-HLH expressed decreased levels of STAT3 proteins which were additionally inactivated and located in the cytoplasm. Combined genomic and expression profiling data revealed several amplified and overexpressed gene candidates involved in opposed regulation of STAT3 and EBV. Corresponding knockdown studies demonstrated that IRF4 and NFATC2 inhibited STAT3 expression. MIR155 (activated by STAT3) and SPIB (repressed by HLX) showed reduced and elevated expression levels in AM-HLH, respectively. However, treatment with IL6 or IL27 activated STAT3, elevated expression of HLX and MIR155, and inhibited IRF4. Taken together, this cell line deals with two conflicting oncogenic drivers, namely, JAK2-STAT3 signaling and EBV infection, but is sensitive to switch after cytokine stimulation. Thus, AM-HLH represents a unique cell line model to study the pathogenic roles of STAT3 and EBV and their therapeutic implications in HL.

13.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328612

RESUMO

Homeobox genes encode transcription factors that control basic developmental decisions. Knowledge of their hematopoietic activities casts light on normal and malignant immune cell development. Recently, we constructed the so-called lymphoid TALE-code that codifies expression patterns of all active TALE class homeobox genes in early hematopoiesis and lymphopoiesis. Here, we present the corresponding myeloid TALE-code to extend this gene signature, covering the entire hematopoietic system. The collective data showed expression patterns for eleven TALE homeobox genes and highlighted the exclusive expression of IRX1 in megakaryocyte-erythroid progenitors (MEPs), implicating this TALE class member in a specific myeloid differentiation process. Analysis of public profiling data from acute myeloid leukemia (AML) patients revealed aberrant activity of IRX1 in addition to IRX3 and IRX5, indicating an oncogenic role for these TALE homeobox genes when deregulated. Screening of RNA-seq data from 100 leukemia/lymphoma cell lines showed overexpression of IRX1, IRX3, and IRX5 in megakaryoblastic and myelomonocytic AML cell lines, chosen as suitable models for studying the regulation and function of these homeo-oncogenes. Genomic copy number analysis of IRX-positive cell lines demonstrated chromosomal amplification of the neighboring IRX3 and IRX5 genes at position 16q12 in MEGAL, underlying their overexpression in this cell line model. Comparative gene expression analysis of these cell lines revealed candidate upstream factors and target genes, namely the co-expression of GATA1 and GATA2 together with IRX1, and of BMP2 and HOXA10 with IRX3/IRX5. Subsequent knockdown and stimulation experiments in AML cell lines confirmed their activating impact in the corresponding IRX gene expression. Furthermore, we demonstrated that IRX1 activated KLF1 and TAL1, while IRX3 inhibited GATA1, GATA2, and FST. Accordingly, we propose that these regulatory relationships may represent major physiological and oncogenic activities of IRX factors in normal and malignant myeloid differentiation, respectively. Finally, the established myeloid TALE-code is a useful tool for evaluating TALE homeobox gene activities in AML.


Assuntos
Sistema Hematopoético , Leucemia Mieloide Aguda , Expressão Ectópica do Gene , Genes Homeobox , Sistema Hematopoético/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Células Progenitoras Mieloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Sci Rep ; 12(1): 1085, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058488

RESUMO

Overexpression of antiapoptotic BCL2 family proteins occurs in various hematologic malignancies and contributes to tumorigenesis by inhibiting the apoptotic machinery of the cells. Antagonizing BH3 mimetics provide an option for medication, with venetoclax as the first drug applied for chronic lymphocytic leukemia and for acute myeloid leukemia. To find additional hematologic entities with ectopic expression of BCL2 family members, we performed expression screening of cell lines applying the LL-100 panel. Anaplastic large cell lymphoma (ALCL) and primary effusion lymphoma (PEL), 2/22 entities covered by this panel, stood out by high expression of MCL1 and low expression of BCL2. The MCL1 inhibitor AZD-5991 induced apoptosis in cell lines from both malignancies, suggesting that this BH3 mimetic might be efficient as drug for these diseases. The ALCL cell lines also expressed BCLXL and BCL2A1, both contributing to survival of the cells. The combination of specific BH3 mimetics yielded synergistic effects, pointing to a novel strategy for the treatment of ALCL. The PI3K/mTOR inhibitor BEZ-235 could also efficiently be applied in combination with AZD-5991, offering an alternative to avoid thrombocytopenia which is associated with the use of BCLXL inhibitors.


Assuntos
Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma de Efusão Primária/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/farmacologia , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/genética , Compostos Macrocíclicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/farmacologia
15.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768865

RESUMO

NKL homeobox genes encode transcription factors that impact normal development and hematopoietic malignancies if deregulated. Recently, we established an NKL-code that describes the physiological expression pattern of eleven NKL homeobox genes in the course of hematopoiesis, allowing evaluation of aberrantly activated NKL genes in leukemia/lymphoma. Here, we identify ectopic expression of NKL homeobox gene NKX2-4 in an erythroblastic acute myeloid leukemia (AML) cell line OCI-M2 and describe investigation of its activating factors and target genes. Comparative expression profiling data of AML cell lines revealed in OCI-M2 an aberrantly activated program for endothelial development including master factor ETV2 and the additional endothelial signature genes HEY1, IRF6, and SOX7. Corresponding siRNA-mediated knockdown experiments showed their role in activating NKX2-4 expression. Furthermore, the ETV2 locus at 19p13 was genomically amplified, possibly underlying its aberrant expression. Target gene analyses of NKX2-4 revealed activated ETV2, HEY1, and SIX5 and suppressed FLI1. Comparative expression profiling analysis of public datasets for AML patients and primary megakaryocyte-erythroid progenitor cells showed conspicuous similarities to NKX2-4 activating factors and the target genes we identified, supporting the clinical relevance of our findings and developmental disturbance by NKX2-4. Finally, identification and target gene analysis of aberrantly expressed NKX2-3 in AML patients and a megakaryoblastic AML cell line ELF-153 showed activation of FLI1, contrasting with OCI-M2. FLI1 encodes a master factor for myelopoiesis, driving megakaryocytic differentiation and suppressing erythroid differentiation, thus representing a basic developmental target of these homeo-oncogenes. Taken together, we have identified aberrantly activated NKL homeobox genes NKX2-3 and NKX2-4 in AML, deregulating genes involved in megakaryocytic and erythroid differentiation processes, and thereby contributing to the formation of specific AML subtypes.


Assuntos
Células Eritroides/citologia , Proteínas de Homeodomínio/genética , Leucemia Eritroblástica Aguda/genética , Megacariócitos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Endotélio/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Eritroblástica Aguda/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição SOXF/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
16.
PLoS One ; 16(11): e0259674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807923

RESUMO

T-box genes encode transcription factors which control basic processes in development of several tissues including cell differentiation in the hematopoietic system. Here, we analyzed the physiological activities of all 17 human T-box genes in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells. The resultant expression pattern comprised six genes, namely EOMES, MGA, TBX1, TBX10, TBX19 and TBX21. We termed this gene signature TBX-code which enables discrimination of normal and aberrant activities of T-box genes in lymphoid malignancies. Accordingly, expression analysis of T-box genes in Hodgkin lymphoma (HL) patients using a public profiling dataset revealed overexpression of EOMES, TBX1, TBX2, TBX3, TBX10, TBX19, TBX21 and TBXT while MGA showed aberrant downregulation. Analysis of T-cell acute lymphoid leukemia patients indicated aberrant overexpression of six T-box genes while no deregulated T-box genes were detected in anaplastic large cell lymphoma patients. As a paradigm we focused on TBX3 which was ectopically activated in about 6% of HL patients analyzed. Normally, TBX3 is expressed in tissues like lung, adrenal gland and retina but not in hematopoiesis. HL cell line KM-H2 expressed enhanced TBX3 levels and was used as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line showed focal amplification of the TBX3 locus at 12q24 which may underlie its aberrant expression. In addition, promoter analysis and comparative expression profiling of HL cell lines followed by knockdown experiments revealed overexpressed transcription factors E2F4 and FOXC1 and chromatin modulator KDM2B as functional activators. Furthermore, we identified repressed target genes of TBX3 in HL including CDKN2A, NFKBIB and CD19, indicating its respective oncogenic function in proliferation, NFkB-signaling and B-cell differentiation. Taken together, we have revealed a lymphoid TBX-code and used it to identify an aberrant network around deregulated T-box gene TBX3 in HL which promotes hallmark aberrations of this disease. These findings provide a framework for future studies to evaluate deregulated T-box genes in lymphoid malignancies.


Assuntos
Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Proteínas com Domínio T/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Linfopoese/fisiologia , Proteínas com Domínio T/genética , Linfócitos T/metabolismo
17.
Biomedicines ; 9(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34829904

RESUMO

Homeobox genes encode transcription factors controlling basic developmental processes. The homeodomain is encoded by the homeobox and mediates sequence-specific DNA binding and interaction with cofactors, thus operating as a basic regulatory platform. Similarities in their homeobox sequences serve to arrange these genes in classes and subclasses, including NKL homeobox genes. In accordance with their normal functions, deregulated homeobox genes contribute to carcinogenesis along with hematopoietic malignancies. We have recently described the physiological expression of eleven NKL homeobox genes in the course of hematopoiesis and termed this gene expression pattern NKL-code. Due to the developmental impact of NKL homeobox genes these data suggest a key role for their activity in the normal regulation of hematopoietic cell differentiation including T-cells. On the other hand, aberrant overexpression of NKL-code members or ectopical activation of non-code members has been frequently reported in lymphoid and myeloid leukemia/lymphoma, demonstrating their oncogenic impact in the hematopoietic compartment. Here, we provide an overview of the NKL-code in normal hematopoiesis and discuss the oncogenic role of deregulated NKL homeobox genes in T-cell malignancies.

18.
PLoS One ; 16(8): e0255622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339474

RESUMO

The SARS-CoV-2 pandemic is a major global threat that sparked global research efforts. Pre-clinical and biochemical SARS-CoV-2 studies firstly rely on cell culture experiments where the importance of choosing an appropriate cell culture model is often underestimated. We here present a bottom-up approach to identify suitable permissive cancer cell lines for drug screening and virus research. Human cancer cell lines were screened for the SARS-CoV-2 cellular entry factors ACE2 and TMPRSS2 based on RNA-seq data of the Cancer Cell Line Encyclopedia (CCLE). However, experimentally testing permissiveness towards SARS-CoV-2 infection, we found limited correlation between receptor expression and permissiveness. This underlines that permissiveness of cells towards viral infection is determined not only by the presence of entry receptors but is defined by the availability of cellular resources, intrinsic immunity, and apoptosis. Aside from established cell culture infection models CACO-2 and CALU-3, three highly permissive human cell lines, colon cancer cell lines CL-14 and CL-40 and the breast cancer cell line CAL-51 and several low permissive cell lines were identified. Cell lines were characterised in more detail offering a broader choice of non-overexpression in vitro infection models to the scientific community. For some cell lines a truncated ACE2 mRNA and missense variants in TMPRSS2 might hint at disturbed host susceptibility towards viral entry.


Assuntos
COVID-19/virologia , Receptores Virais , SARS-CoV-2/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linhagem Celular Tumoral , Humanos , Receptores Virais/genética , Receptores Virais/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
19.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072771

RESUMO

Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.


Assuntos
Células Dendríticas/metabolismo , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Genes Homeobox , Humanos , Imunofenotipagem , Transcriptoma
20.
Curr Oncol ; 28(3): 1790-1794, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068566

RESUMO

Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm that is genetically characterized by the absence of both the Philadelphia chromosome and BCR-ABL1 fusion gene and the high prevalence of mutations in the colony-stimulating factor 3 receptor (CSF3R). Additional disease-modifying mutations have been recognized in CNL samples, portraying a distinct mutational landscape. Despite the growing knowledge base on genomic aberrations, further progress could be gained from the availability of representative models of CNL. To address this gap, we screened a large panel of available leukemia cell lines, followed by a detailed mutational investigation with focus on the CNL-associated candidate driver genes. The sister cell lines CNLBC-1 and MOLM-20 were derived from a patient with CNL and carry CNL-typical molecular hallmarks, namely mutations in several genes, such as CSF3R, ASXL1, EZH2, NRAS, and SETBP1. The use of these validated and comprehensively characterized models will benefit the understanding of the pathobiology of CNL and help inform therapeutic strategies.


Assuntos
Leucemia Neutrofílica Crônica , Leucemia , Linhagem Celular , Humanos , Leucemia Neutrofílica Crônica/genética , Mutação , Receptores de Fator Estimulador de Colônias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA