Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(26): eabn0929, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776798

RESUMO

Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.

2.
Environ Sci Technol ; 54(15): 9325-9333, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32597170

RESUMO

The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ202Hg and Δ199Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ199Hg values measured in modern-day precipitation and modeled increases in δ202Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.


Assuntos
Mercúrio , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Mercúrio/análise , América do Norte , Estados Unidos , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 599-600: 145-155, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475908

RESUMO

In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r2=0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r2=0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r2=0.55 for glacial stream, r2=0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm-2y-1, which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska.

5.
Environ Pollut ; 184: 62-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24035911

RESUMO

Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.


Assuntos
Camada de Gelo/química , Mercúrio/análise , Rios/química , Salmão/metabolismo , Poluentes Químicos da Água/análise , Áreas Alagadas , Alaska , Animais , Biota , Ecossistema , Monitoramento Ambiental , Mercúrio/metabolismo , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Environ Sci Technol ; 37(5): 859-64, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12666913

RESUMO

A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.


Assuntos
Sedimentos Geológicos/química , Poluentes da Água/análise , Água/química , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Montana , Periodicidade , Chuva , Estações do Ano , Neve
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA