RESUMO
OBJECTIVE: We examine pathways of airway alteration due to wall thinning, narrowing, and obliteration at different COPD severity stages using CT-derived airway metrics. METHODS: Ex-smokers (N = 649; age mean±std: 69 ± 6years; 52% male) from the COPDGene Iowa cohort (September 2013-July 2017) were studied. Total airway count (TAC), peripheral TAC beyond 7th generation (TACp), and airway wall thickness (WT) were computed from chest CT scans using previously validated automated methods. Causal relationships among demographic, smoking, spirometry, COPD severity, airway counts, WT, and scanner variables were analyzed using causal inference techniques including direct acyclic graphs (DAGs) to quantitatively assess multi-pathway alterations of airways in COPD. RESULTS: TAC, TACp, and WT were significantly lower (p < 0.0001) in mild, moderate, and severe COPD compared to the preserved lung function group. TAC (TACp) losses attributed to narrowing and obliteration of small airways were 4.59, 13.29, and 32.58% (4.64, 17.82, and 45.51%) in mild, moderate, and severe COPD, while the losses attributed to wall thinning were 8.24, 17.01, and 22.95% (12.79, 25.66, and 33.95%) in respective groups. CONCLUSIONS: Different pathways of airway alteration in COPD are observed using CT-derived automated airway metrics. Wall thinning is a dominant contributor to both TAC and TACp loss in mild and moderate COPD while narrowing and obliteration of small airways is dominant in severe COPD. ADVANCES IN KNOWLEDGE: This automated CT-based study shows that wall thinning dominates airway alteration in mild and moderate COPD while narrowing and obliteration of small airways leads the alteration process in severe COPD.
RESUMO
Autoimmune and autoinflammatory diseases account for more than 80 chronic conditions affecting more than 24 million people in the US. Among these autoinflammatory diseases, noninfectious chronic inflammation of the gastrointestinal (GI) tract causes inflammatory bowel diseases (IBDs), primarily Crohn's and ulcerative colitis (UC). IBD is a complex disease, and one hypothesis is that these are either caused or worsened by compounds produced by bacteria in the gut. While traditional approaches have focused on pan immunosuppressive techniques (e.g., steroids), low remission rates, prolonged illnesses, and an increased frequency of surgical procedures have prompted the search for more targeted and precision therapeutic approaches. IBD is a complex disease resulting from both genetic and environmental factors, but several recent studies have highlighted the potential pivotal contribution of gut microbiota dysbiosis. Gut microbiota are known to modulate the immune status of the gut by producing metabolites that are encoded in biosynthetic gene clusters (BGCs) of the bacterial genome. Here, we show a targeted and high-throughput screening of more than 90 biosynthetic genes in 41 gut anaerobes, through downselection using available bioinformatics tools, targeted gene manipulation in these genetically intractable organisms using the Nanoligomer platform, and identification and synthesis of top microbiome targets as a Nanoligomer BGC cocktail (SB_BGC_CK1, abbreviated as CK1) as a feasible precision therapeutic approach. Further, we used a host-directed immune target screening to identify the NF-κB and NLRP3 cocktail SB_NI_112 (or NI112 for short) as a targeted inflammasome inhibitor. We used these top two microbe- and host-targeted Nanoligomer cocktails in acute and chronic dextran sulfate sodium (DSS) mouse colitis and in TNFΔARE/+ transgenic mice that develop spontaneous Crohn's like ileitis. The mouse microbiome was humanized to replicate that in human IBD through antibiotic treatment, followed by mixed fecal gavage from 10 human donors and spiked with IBD-inducing microbial species. Following colonization, colitis was induced in mice using 1 week of 3% DSS (acute) or 6 weeks of 3 rounds of 2.5% DSS induction for a week followed by 1 week of no DSS (chronic colitis model). Both Nanoligomer cocktails (CK1 and NI112) showed a strong reduction in disease severity, significant improvement in disease histopathology, and profound downregulation of disease biomarkers in colon tissue, as assessed by multiplexed ELISA. Further, we used two different formulations of intraperitoneal injections (IP) and Nanoligomer pills in the chronic DSS colitis model. Although both formulations were highly effective, the oral pill formulation demonstrated a greater reduction in biochemical markers compared to IP. A similar therapeutic effect was observed in the TNFΔARE/+ model. Overall, these results point to the potential for further development and testing of this inflammasome-targeting host-directed therapy (NI112) and more personalized microbiome cocktails (CK1) for patients with recalcitrant IBD.
RESUMO
BACKGROUND: Cardiac applications in radiation therapy are rapidly expanding including magnetic resonance guided radiation therapy (MRgRT) for real-time gating for targeting and avoidance near the heart or treating ventricular tachycardia (VT). PURPOSE: This work describes the development and implementation of a novel multi-modality and magnetic resonance (MR)-compatible cardiac phantom. METHODS: The patient-informed 3D model was derived from manual contouring of a contrast-enhanced Coronary Computed Tomography Angiography scan, exported as a Stereolithography model, then post-processed to simulate female heart with an average volume. The model was 3D-printed using Elastic50A to provide MR contrast to water background. Two rigid acrylic modules containing cardiac structures were designed and assembled, retrofitting to an MR-safe programmable motor to supply cardiac and respiratory motion in superior-inferior directions. One module contained a cavity for an ion chamber (IC), and the other was equipped with multiple interchangeable cavities for plastic scintillation detectors (PSDs). Images were acquired on a 0.35 T MR-linac for validation of phantom geometry, motion, and simulated online treatment planning and delivery. Three motion profiles were prescribed: patient-derived cardiac (sine waveform, 4.3 mm peak-to-peak, 60 beats/min), respiratory (cos4 waveform, 30 mm peak-to-peak, 12 breaths/min), and a superposition of cardiac (sine waveform, 4 mm peak-to-peak, 70 beats/min) and respiratory (cos4 waveform, 24 mm peak-to-peak, 12 breaths/min). The amplitude of the motion profiles was evaluated from sagittal cine images at eight frames/s with a resolution of 2.4 mm × 2.4 mm. Gated dosimetry experiments were performed using the two module configurations for calculating dose relative to stationary. A CT-based VT treatment plan was delivered twice under cone-beam CT guidance and cumulative stationary doses to multi-point PSDs were evaluated. RESULTS: No artifacts were observed on any images acquired during phantom operation. Phantom excursions measured 49.3 ± 25.8%/66.9 ± 14.0%, 97.0 ± 2.2%/96.4 ± 1.7%, and 90.4 ± 4.8%/89.3 ± 3.5% of prescription for cardiac, respiratory, and cardio-respiratory motion profiles for the 2-chamber (PSD) and 12-substructure (IC) phantom modules respectively. In the gated experiments, the cumulative dose was <2% from expected using the IC module. Real-time dose measured for the PSDs at 10 Hz acquisition rate demonstrated the ability to detect the dosimetric consequences of cardiac, respiratory, and cardio-respiratory motion when sampling of different locations during a single delivery, and the stability of our phantom dosimetric results over repeated cycles for the high dose and high gradient regions. For the VT delivery, high dose PSD was <1% from expected (5-6 cGy deviation of 5.9 Gy/fraction) and high gradient/low dose regions had deviations <3.6% (6.3 cGy less than expected 1.73 Gy/fraction). CONCLUSIONS: A novel multi-modality modular heart phantom was designed, constructed, and used for gated radiotherapy experiments on a 0.35 T MR-linac. Our phantom was capable of mimicking cardiac, cardio-respiratory, and respiratory motion while performing dosimetric evaluations of gated procedures using IC and PSD configurations. Time-resolved PSDs with small sensitive volumes appear promising for low-amplitude/high-frequency motion and multi-point data acquisition for advanced dosimetric capabilities. Illustrating VT planning and delivery further expands our phantom to address the unmet needs of cardiac applications in radiotherapy.
Assuntos
Coração , Imageamento por Ressonância Magnética , Movimento , Imagens de Fantasmas , Radiometria , Radioterapia Guiada por Imagem , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Radiometria/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , FemininoRESUMO
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aß42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Assuntos
Inflamassomos , Organoides , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Organoides/efeitos dos fármacos , Inflamassomos/metabolismo , Fármacos Neuroprotetores/farmacologia , Voo Espacial , Ausência de Peso , Doenças Neurodegenerativas , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismoRESUMO
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Assuntos
Envelhecimento , Camundongos Transgênicos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Tauopatias , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Camundongos , NF-kappa B/metabolismo , Envelhecimento/efeitos dos fármacos , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Camundongos Endogâmicos C57BL , MasculinoRESUMO
Abdominal aortic aneurysm (AAA) is a significant vascular disease found in 4% to 8% of the screening population. If ruptured, its mortality rate is between 75% and 90%, and it accounts for up to 5% of sudden deaths in the United States. Therefore, screening of AAA while asymptomatic has been a crucial portion of preventive health care worldwide. Ultrasound of the abdominal aorta is the primary imaging modality for screening of AAA recommended for asymptomatic adults regardless of their family history or smoking history. Alternatively, duplex ultrasound and CT abdomen and pelvis without contrast may be appropriate for screening. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Assuntos
Aneurisma da Aorta Abdominal , Medicina Baseada em Evidências , Programas de Rastreamento , Sociedades Médicas , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Estados Unidos , Programas de Rastreamento/métodos , Programas de Rastreamento/normasRESUMO
Pulmonary arteriovenous malformations (PAVMs) occur in 30% to 50% of patients with hereditary hemorrhagic telangiectasia. Clinical presentations vary from asymptomatic disease to complications resulting from the right to left shunting of blood through the PAVM such as paradoxical stroke, brain abscesses, hypoxemia, and cardiac failure. Radiology plays an important role both in the diagnosis and treatment of PAVM. Based on different clinical scenarios, the appropriate imaging study has been reviewed and is presented in this document. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Assuntos
Medicina Baseada em Evidências , Artéria Pulmonar , Veias Pulmonares , Sociedades Médicas , Humanos , Estados Unidos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/anormalidades , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/anormalidades , Malformações Arteriovenosas/diagnóstico por imagem , Fístula Arteriovenosa/diagnóstico por imagemRESUMO
RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.
RESUMO
PURPOSE: We investigated spatial resolution loss away from isocenter for a prototype deep silicon photon-counting detector (PCD) CT scanner and compare with a clinical energy-integrating detector (EID) CT scanner. MATERIALS AND METHODS: We performed three scans on a wire phantom at four positions (isocenter, 6.7, 11.8, and 17.1 cm off isocenter). The acquisition modes were 120 kV EID CT, 120 kV high-definition (HD) EID CT, and 120 kV PCD CT. HD mode used double the projection view angles per rotation as the "regular" EID scan mode. The diameter of the wire was calculated by taking the full width of half max (FWHM) of a profile drawn over the radial and azimuthal directions of the wire. Change in wire diameter appearance was assessed by calculating the ratio of the radial and azimuthal diameter relative to isocenter. t tests were used to make pairwise comparisons of the wire diameter ratio with each acquisition and mean ratios' difference from unity. RESULTS: Deep silicon PCD CT had statistically smaller ( P <0.05) changes in diameter ratio for both radial and azimuthal directions compared with both regular and HD EID modes and was not statistically different from unity ( P <0.05). Maximum increases in FWMH relative to isocenter were 36%, 12%, and 1% for regular EID, HD EID, and deep silicon PCD, respectively. CONCLUSION: Deep silicon PCD CT exhibits less change in spatial resolution in both the radial and azimuthal directions compared with EID CT.
Assuntos
Pulmão , Imagens de Fantasmas , Fótons , Silício , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagemRESUMO
Heart transplantation is a pivotal treatment of end-stage heart failure, and recent advancements have extended median posttransplant life expectancy. However, despite the progress in surgical techniques and medical treatment, heart transplant patients still face complications such as rejection, infections, and drug toxicity. CT is a reliable tool for detecting most of these complications, whereas MR imaging is particularly adept at identifying pericardial pathologies and signs of rejection. Awareness of these nuances by radiologists, cardiologists, and surgeons is desired to optimize care, reduce morbidities, and enhance survival.
Assuntos
Transplante de Coração , Radiologia , Humanos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Radiografia , Imageamento por Ressonância Magnética , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologiaRESUMO
Aortic pathologies encompass a heterogeneous group of disorders, including acute aortic syndrome, traumatic aortic injury , aneurysm, aortitis, and atherosclerosis. The clinical manifestations of these disorders can be varied and non-specific, ranging from acute presentations in the emergency department to chronic incidental findings in an outpatient setting. Given the non-specific nature of their clinical presentations, the reliance on non-invasive imaging for screening, definitive diagnosis, therapeutic strategy planning, and post-intervention surveillance has become paramount. Commonly used imaging modalities include ultrasound, computed tomography (CT), and MR imaging. Among these modalities, computed tomography angiography (CTA) has emerged as a first-line imaging modality owing to its excellent anatomic detail, widespread availability, established imaging protocols, evidence-proven indications, and rapid acquisition time.
Assuntos
Doenças da Aorta , Angiografia por Tomografia Computadorizada , Humanos , Angiografia por Tomografia Computadorizada/métodos , Doenças da Aorta/diagnóstico por imagem , Aorta/lesões , Tomografia Computadorizada por Raios X , Imageamento por Ressonância MagnéticaRESUMO
Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1ß production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.
RESUMO
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Doenças Priônicas , Príons , Deficiências na Proteostase , Humanos , Camundongos , Animais , Doenças Neurodegenerativas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Regulação para Baixo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Príons/metabolismo , Inflamação/metabolismo , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/metabolismoRESUMO
Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Feminino , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Camundongos Endogâmicos C57BLRESUMO
Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationships with vascular and airway pathophysiology remain unclear. Objectives: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial dilation measured on computed tomography (CT) are associated with a 1-year index of emphysema (EI; percentage of voxels <-950 Hounsfield units) progression. Methods: Five hundred ninety-nine former and never-smokers (Global Initiative for Chronic Obstructive Lung Disease stages 0-3) were evaluated from the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort: rapid emphysema progressors (RPs; n = 188, 1-year ΔEI > 1%), nonprogressors (n = 301, 1-year ΔEI ± 0.5%), and never-smokers (n = 110). Segmental pulmonary arterial cross-sectional areas were standardized to associated airway luminal areas (segmental pulmonary artery-to-airway ratio [PAARseg]). Full-inspiratory CT scan-derived total (arteries and veins) pulmonary vascular volume (TPVV) was compared with small vessel volume (radius smaller than 0.75 mm). Ratios of airway to lung volume (an index of dysanapsis and COPD risk) were compared with ratios of TPVV to lung volume. Results: Compared with nonprogressors, RPs exhibited significantly larger PAARseg (0.73 ± 0.29 vs. 0.67 ± 0.23; P = 0.001), lower ratios of TPVV to lung volume (3.21 ± 0.42% vs. 3.48 ± 0.38%; P = 5.0 × 10-12), lower ratios of airway to lung volume (0.031 ± 0.003 vs. 0.034 ± 0.004; P = 6.1 × 10-13), and larger ratios of small vessel volume to TPVV (37.91 ± 4.26% vs. 35.53 ± 4.89%; P = 1.9 × 10-7). In adjusted analyses, an increment of 1 standard deviation in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95% confidence interval, 29-206%; P = 0.002) and 79.3% higher odds of being in the RP group (95% confidence interval, 24-157%; P = 0.001). At 2-year follow-up, the CT-defined RP group demonstrated a significant decline in postbronchodilator percentage predicted forced expiratory volume in 1 second. Conclusions: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.
Assuntos
Progressão da Doença , Artéria Pulmonar , Enfisema Pulmonar , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/fisiopatologia , Idoso , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Volume Expiratório Forçado , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagemRESUMO
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
RESUMO
RATIONALE AND OBJECTIVES: The absence of published reference values for multilayer-specific strain measurement using cardiac magnetic resonance (CMR) in young healthy individuals limits its use. This study aimed to establish normal global and layer-specific strain values in healthy children and young adults using a deformable registration algorithm (DRA). MATERIALS AND METHODS: A retrospective study included 131 healthy children and young adults (62 males and 69 females) with a mean age of 16.6 ± 3.9 years. CMR examinations were conducted using 1.5T scanners, and strain analysis was performed using TrufiStrain research prototype software (Siemens Healthineers, Erlangen, Germany). Global and layer-specific strain parameters were extracted from balanced Steady-state free precession cine images. Statistical analyses were conducted to evaluate the impact of demographic variables on strain measurements. RESULTS: The peak global longitudinal strain (LS) was -16.0 ± 3.0%, peak global radial strain (RS) was 29.9 ± 6.3%, and peak global circumferential strain (CS) was -17.0 ± 1.8%. Global LS differed significantly between males and females. Transmural strain analysis showed a consistent pattern of decreasing LS and CS from endocardium to epicardium, while radial strain increased. Basal-to-apical strain distribution exhibited decreasing LS and increasing CS in both global and layer-specific analysis. CONCLUSION: This study uses DRA to provide reference values for global and layer-specific strain in healthy children and young adults. The study highlights the impact of sex and age on LS and body mass index on RS. These insights are vital for future cardiac assessments in children, particularly for early detection of heart diseases.
Assuntos
Inteligência Artificial , Imagem Cinética por Ressonância Magnética , Masculino , Feminino , Criança , Humanos , Adulto Jovem , Adolescente , Adulto , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Ventrículos do Coração , Imageamento por Ressonância Magnética/métodos , Função Ventricular EsquerdaRESUMO
RATIONALE AND OBJECTIVES: Cardiac magnetic resonance imaging is crucial for diagnosing cardiovascular diseases, but lengthy postprocessing and manual segmentation can lead to observer bias. Deep learning (DL) has been proposed for automated cardiac segmentation; however, its effectiveness is limited by the slice range selection from base to apex. MATERIALS AND METHODS: In this study, we integrated an automated slice range classification step to identify basal to apical short-axis slices before DL-based segmentation. We employed publicly available Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI data set with short-axis cine data from 160 training, 40 validation, and 160 testing cases. Three classification and seven segmentation DL models were studied. The top-performing segmentation model was assessed with and without the classification model. Model validation to compare automated and manual segmentation was performed using Dice score and Hausdorff distance and clinical indices (correlation score and Bland-Altman plots). RESULTS: The combined classification (CBAM-integrated 2D-CNN) and segmentation model (2D-UNet with dilated convolution block) demonstrated superior performance, achieving Dice scores of 0.952 for left ventricle (LV), 0.933 for right ventricle (RV), and 0.875 for myocardium, compared to the stand-alone segmentation model (0.949 for LV, 0.925 for RV, and 0.867 for myocardium). Combined classification and segmentation model showed high correlation (0.92-0.99) with manual segmentation for biventricular volumes, ejection fraction, and myocardial mass. The mean absolute difference (2.8-8.3 mL) for clinical parameters between automated and manual segmentation was within the interobserver variability range, indicating comparable performance to manual annotation. CONCLUSION: Integrating an initial automated slice range classification step into the segmentation process improves the performance of DL-based cardiac chamber segmentation.
Assuntos
Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Miocárdio/patologia , Imagem Cinética por Ressonância Magnética/métodosRESUMO
Biomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non-specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein-nanoparticle hybrids formed through the spontaneous coupling of core-shell quantum dots (QDs) with histidine-tagged enzymes in non-photosynthetic bacteria, for light-mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7-fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9-fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low-cost biomanufacturing.