Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nat Immunol ; 25(2): 316-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182669

RESUMO

Pneumococcal infections cause serious illness and death among older adults. The capsular polysaccharide vaccine PPSV23 and conjugated alternative PCV13 can prevent these infections; yet, underlying immunological responses and baseline predictors remain unknown. We vaccinated 39 older adults (>60 years) with PPSV23 or PCV13 and observed comparable antibody responses (day 28) and plasmablast transcriptional responses (day 10); however, the baseline predictors were distinct. Analyses of baseline flow cytometry and bulk and single-cell RNA-sequencing data revealed a baseline phenotype specifically associated with weaker PCV13 responses, which was characterized by increased expression of cytotoxicity-associated genes, increased frequencies of CD16+ natural killer cells and interleukin-17-producing helper T cells and a decreased frequency of type 1 helper T cells. Men displayed this phenotype more robustly and mounted weaker PCV13 responses than women. Baseline expression levels of a distinct gene set predicted PPSV23 responses. This pneumococcal precision vaccinology study in older adults uncovered distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.


Assuntos
Anticorpos Antibacterianos , Streptococcus pneumoniae , Masculino , Humanos , Feminino , Idoso , Vacinas Conjugadas , Método Duplo-Cego , Vacinação , Vacinas Pneumocócicas , Polissacarídeos
2.
J Biol Chem ; 299(9): 105085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495106

RESUMO

The polysaccharide (PS) capsule is essential for immune evasion and virulence of Streptococcus pneumoniae. Existing pneumococcal vaccines are designed to elicit anticapsule antibodies; however, the effectiveness of these vaccines is being challenged by the emergence of new capsule types or variants. Herein, we characterize a newly discovered capsule type, 33E, that appears to have repeatedly emerged from vaccine type 33F via an inactivation mutation in the capsule glycosyltransferase gene, wciE. Structural analysis demonstrated that 33E and 33F share an identical repeat unit backbone [→5)-ß-D-Galf2Ac-(1→3)-ß-D-Galp-(1→3)-α-D-Galp-(1→3)-ß-D-Galf-(1→3)-ß-D-Glcp-(1→], except that a galactose (α-D-Galp) branch is present in 33F but not in 33E. Though the two capsule types were indistinguishable using conventional typing methods, the monoclonal antibody Hyp33FM1 selectively bound 33F but not 33E pneumococci. Further, we confirmed that wciE encodes a glycosyltransferase that catalyzes the addition of the branching α-D-Galp and that its inactivation in 33F strains results in the expression of the 33E capsule type. Though 33F and 33E share a structural and antigenic similarity, our pilot study suggested that immunization with a 23-valent pneumococcal PS vaccine containing 33F PS did not significantly elicit cross-opsonic antibodies to 33E. New conjugate vaccines that target capsule type 33F may not necessarily protect against 33E. Therefore, studies of new conjugate vaccines require knowledge of the newly identified capsule type 33E and reliable pneumococcal typing methods capable of distinguishing it from 33F.


Assuntos
Cápsulas Bacterianas , Genes Bacterianos , Infecções Pneumocócicas , Streptococcus pneumoniae , Transferases , Anticorpos Antibacterianos/imunologia , Projetos Piloto , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/classificação , Vacinas Pneumocócicas/imunologia , Polissacarídeos/química , Sorogrupo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/classificação , Vacinas Conjugadas/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Inativação Gênica , Transferases/genética , Transferases/metabolismo
3.
medRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131707

RESUMO

Pneumococcal infections cause serious illness and death among older adults. A capsular polysaccharide vaccine PPSV23 (Pneumovax®) and a conjugated polysaccharide vaccine PCV13 (Prevnar®) are used to prevent these infections, yet underlying responses, and baseline predictors remain unknown. We recruited and vaccinated 39 older adults (>60 years) with PPSV23 or PCV13. Both vaccines induced strong antibody responses at day 28 and similar plasmablast transcriptional signatures at day 10, however, their baseline predictors were distinct. Analyses of baseline flow cytometry and RNA-seq data (bulk and single cell) revealed a novel baseline phenotype that is specifically associated with weaker PCV13 responses, characterized by i) increased expression of cytotoxicity-associated genes and increased CD16+ NK frequency; ii) increased Th17 and decreased Th1 cell frequency. Men were more likely to display this cytotoxic phenotype and mounted weaker responses to PCV13 than women. Baseline expression levels of a distinct gene set was predictive of PPSV23 responses. This first precision vaccinology study for pneumococcal vaccine responses of older adults uncovered novel and distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.

4.
Sci Rep ; 13(1): 5324, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005394

RESUMO

Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.


Assuntos
Anti-Infecciosos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Galectinas/metabolismo , Polissacarídeos/metabolismo
5.
Clin Immunol ; 250: 109324, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030524

RESUMO

While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether frequent exacerbators have specific defects in antibody production/function. We hypothesized that reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in the SPIROMICS cohort. We measured total pneumococcal IgG in n = 764 previously vaccinated participants with COPD. In a propensity-matched subset of n = 200 with vaccination within five years (n = 50 without exacerbations in the previous year; n = 75 with one, n = 75 with ≥2), we measured pneumococcal IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes. Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be useful biomarkers for immune dysfunction in COPD.


Assuntos
Infecções Pneumocócicas , Doença Pulmonar Obstrutiva Crônica , Humanos , Imunoglobulina G , Streptococcus pneumoniae , Vacinação , Testes Imunológicos , Anticorpos Antibacterianos , Vacinas Pneumocócicas
6.
J Clin Microbiol ; 61(4): e0002423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36971549

RESUMO

Streptococcus pneumoniae can produce a wide breadth of antigenically diverse capsule types, a fact that poses a looming threat to the success of vaccines that target pneumococcal polysaccharide (PS) capsule. Yet, many pneumococcal capsule types remain undiscovered and/or uncharacterized. Prior sequence analysis of pneumococcal capsule synthesis (cps) loci suggested the existence of capsule subtypes among isolates identified as "serotype 36" according to conventional capsule typing methods. We discovered these subtypes represent two antigenically similar but distinguishable pneumococcal capsule serotypes, 36A and 36B. Biochemical analysis of their capsule PS structure reveals that both have the shared repeat unit backbone [→5)-α-d-Galf-(1→1)-d-Rib-ol-(5→P→6)-ß-d-ManpNAc-(1→4)-ß-d-Glcp-(1→] with two branching structures. Both serotypes have a ß-d-Galp branch to Ribitol. Serotypes 36A and 36B differ by the presence of a α-d-Glcp-(1→3)-ß-d-ManpNAc or α-d-Galp-(1→3)-ß-d-ManpNAc branch, respectively. Comparison of the phylogenetically distant serogroup 9 and 36 cps loci, which all encode this distinguishing glycosidic bond, revealed that the incorporation of Glcp (in types 9N and 36A) versus Galp (in types 9A, 9V, 9L, and 36B) is associated with the identity of four amino acids in the cps-encoded glycosyltransferase WcjA. Identifying functional determinants of cps-encoded enzymes and their impact on capsule PS structure is key to improving the resolution and reliability of sequencing-based capsule typing methods and discovering novel capsule variants indistinguishable by conventional serotyping methods.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Sorogrupo , Reprodutibilidade dos Testes , Sorotipagem , Polissacarídeos , Vacinas Pneumocócicas , Cápsulas Bacterianas/química
7.
Front Immunol ; 13: 1079047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578488

RESUMO

VSA-1 is a semisynthetic saponin adjuvant prepared from naturally occurring Momordica saponin and capable of stimulating antigen-specific humoral and cellular immune responses. Its immunostimulating activity in enhancing the immune responses induced by the clinical glycoconjugate pneumococcal vaccine PCV13 is compared with QS-21 in female BALB/c mice. Both VSA-1 and QS-21 boosted IgG and opsonic antibodies titers against seven selected serotypes, including serotypes 3, 14, and 19A that are involved in most PCV13 breakthroughs. Since VSA-1 is much more accessible and of lower toxicity than QS-21, it can be a practical saponin immunostimulant to be included in a new glycoconjugate pneumococcal vaccine formulation.


Assuntos
Vacinas Pneumocócicas , Saponinas , Animais , Camundongos , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Imunoglobulina G , Saponinas/farmacologia
8.
J Infect Chemother ; 28(11): 1452-1458, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35835387

RESUMO

INTRODUCTION: Since the introduction of pneumococcal conjugate vaccine, there have been warnings of an increase in infections caused by non-vaccine type of Streptococcus pneumoniae strains. Among them, nonencapsulated Streptococcus pneumoniae (NESp) has been reported to cause invasive infections, especially in children and the elderly. Due to low virulence, however, basic experimental reports on invasive infections are limited. METHODS: We applied a liquid-agar method to establish a mouse model of invasive NESp infection. Mice were intratracheally administered a bacterial suspension including agar. With this technique, we investigated the pathogenicity of NESp and the effect of Pneumococcal surface protein K (PspK), a specific surface protein antigen of NESp. NESp wild-type strain (MNZ11) and NESp pspK-deleted mutant strain (MNZ1131) were used in this study. The survival rate, number of bacteria, cytokine/chemokine levels in the bronchoalveolar lavage fluid, and histology of the lung tissue were evaluated. RESULTS: Mice that were intratracheally administered MNZ11 developed lethal pneumonia with bacteremia within 48 h. Conversely, MNZ1131 showed predominantly low lethality without significant pro-inflammatory cytokine production. NESp was found to cause severe pneumonia and bacteremia upon reaching the lower respiratory tract, and PspK was a critical factor of NESp for developing invasive infections. CONCLUSIONS: The current study demonstrated the ability of NESp to develop invasive diseases, especially in connection with PspK by use of a mouse pneumonia model.


Assuntos
Bacteriemia , Infecções Pneumocócicas , Pneumonia Pneumocócica , Ágar/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Virulência
9.
Front Immunol ; 13: 841062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418983

RESUMO

Reports conflict regarding which lectin-microbial ligand interactions elicit a protective response from the lectin pathway (LP) of complement. Using fluorescent microscopy, we demonstrate the human lectin ficolin-2 binds to Streptococcus pneumoniae serotype 11A capsule polysaccharide dependent on the O-acetyltransferase gene wcjE. This triggers complement deposition and promotes opsonophagocytosis of encapsulated pneumococci. Even partial loss of ficolin-2 ligand expression through wcjE mutation abrogated bacterial killing. Ficolin-2 did not interact with any pneumococcal non-capsule structures, including teichoic acid. We describe multiple 11A clonal derivatives expressing varying degrees of wcjE-dependent epitopes co-isolated from single blood specimens, likely representing microevolutionary shifts towards wcjE-deficient populations during invasive pneumococcal disease (IPD). We find epidemiological evidence of wcjE impairing pneumococcal invasiveness, supporting that the LP's ficolin-2 axis provides innate, serotype-specific serological protection against IPD. The fact that the LP is triggered by only a few discrete carbohydrate ligands emphasizes the need to reevaluate its impact in a glycopolymer-specific manner.


Assuntos
Lectina de Ligação a Manose da Via do Complemento , Lectinas , Infecções Pneumocócicas , Humanos , Imunidade Inata , Lectinas/metabolismo , Ligantes , Streptococcus pneumoniae , Ficolinas
10.
Infect Immun ; 90(2): e0062221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34978928

RESUMO

We established an infant mouse model for colonization and transmission by nonencapsulated Streptococcus pneumoniae (NESp) strains to gain important information about its virulence among children. Invasive pneumococcal diseases have decreased dramatically since the worldwide introduction of pneumococcal capsular polysaccharide vaccines. Increasing prevalence of nonvaccine serotypes, including NESp, has been highlighted as a challenge in treatment strategy, but the virulence of NESp is not well understood. Protective strategies against NESp colonization and transmission between children require particularly urgent evaluation. NESp lacks capsules, a major virulence factor of pneumococci, but can cause a variety of infections in children and older people. PspK, a specific surface protein of NESp, is a key factor in establishing nasal colonization. In our infant mouse model for colonization and transmission by NESp strains, NESp could establish stable nasal colonization at the same level as encapsulated serotype 6A in infant mice and could be transmitted between littermates. Transmission was promoted by NESp surface virulence factor PspK and influenza virus coinfection. However, PspK deletion mutants lost the ability to colonize and transmit to new hosts. Promotion of NESp transmission by influenza was due to increased susceptibility of the new hosts. PspK was a key factor not only in establishment of nasal colonization but also in transmission to new hosts. PspK may be targeted as a new candidate vaccine for NESp infection in children.


Assuntos
Coinfecção , Vírus da Influenza A , Infecções Pneumocócicas , Idoso , Animais , Darbepoetina alfa/metabolismo , Modelos Animais de Doenças , Humanos , Vírus da Influenza A/genética , Camundongos , Vacinas Pneumocócicas , Streptococcus pneumoniae , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Clin Infect Dis ; 75(4): 647-656, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34891152

RESUMO

BACKGROUND: Carriage studies are fundamental to assessing the effects of pneumococcal vaccines. Because a large proportion of oral streptococci carry homologues of pneumococcal genes, non-culture-based detection and serotyping of upper respiratory tract (URT) samples can be problematic. In the current study, we investigated whether culture-free molecular methods could differentiate pneumococci from oral streptococci carried by adults in the URT. METHODS: Paired nasopharyngeal (NP) and oropharyngeal (OP) samples were collected from 100 older adults twice a month for 1 year. Extracts from the combined NP + OP samples (n = 2400) were subjected to lytA real-time polymerase chain reaction (PCR). Positive samples were subjected to pure culture isolation, followed by species confirmation using multiple approaches. Multibead assays and whole-genome sequencing were used for serotyping. RESULTS: In 20 of 301 combined NP + OP extracts with positive lytA PCR results, probable pneumococcus-like colonies grew, based on colony morphology and biochemical tests. Multiple approaches confirmed that 4 isolates were Streptococcus pneumoniae, 3 were Streptococcus pseudopneumoniae, 12 were Streptococcus mitis, and 1 were Streptococcus oralis. Eight nonpneumococcal strains carried pneumococcus-like cps loci (approximate size, 18-25 kb) that showed >70% nucleotide identity with their pneumococcal counterparts. While investigating the antigenic profile, we found that some S. mitis strains (P066 and P107) reacted with both serotype-specific polyclonal (type 39 and FS17b) and monoclonal (Hyp10AG1 and Hyp17FM1) antisera, whereas some strains (P063 and P074) reacted only with polyclonal antisera (type 5 and FS35a). CONCLUSION: The extensive capsular overlap suggests that pneumococcal vaccines could reduce carriage of oral streptococci expressing cross-reactive capsules. Furthermore, direct use of culture-free PCR-based methods in URT samples has limited usefulness for carriage studies.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Idoso , Portador Sadio/diagnóstico , Humanos , Soros Imunes , Nasofaringe , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Reação em Cadeia da Polimerase em Tempo Real , Sorotipagem , Organização Mundial da Saúde
12.
Infect Immun ; 90(1): e0045121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748366

RESUMO

Streptococcus pneumoniae colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact S. pneumoniae's behavior. Herein, using chemically defined medium (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical site-specific carbohydrate availability impacted S. pneumoniae physiology and virulence. S. pneumoniae cells grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity and a lower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus S. pneumoniae cells grown in CDM modeling blood (CDM-B). Using transcriptome sequencing (RNA-seq), we determined the transcriptome for the S. pneumoniae wild-type (WT) strain and its isogenic CCR-deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded established virulence determinants, such as polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established S. pneumoniae virulence traits. S. pneumoniae cells grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of S. pneumoniae in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization model and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters S. pneumoniae physiology and virulence, in turn promoting anatomical site-specific fitness.


Assuntos
Adaptação Fisiológica , Metabolismo dos Carboidratos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Aderência Bacteriana , Feminino , Masculino , Camundongos , Especificidade de Órgãos , Virulência , Fatores de Virulência
13.
mBio ; 12(5): e0251621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634940

RESUMO

The polysaccharide capsule that surrounds Streptococcus pneumoniae (Spn) is one of its most important virulence determinants, serving to protect against phagocytosis. To date, 100 biochemical and antigenically distinct capsule types, i.e., serotypes, of Spn have been identified. Yet how capsule influences pneumococcal translocation across vascular endothelial cells (VEC), a key step in the progression of invasive disease, was unknown. Here, we show that despite capsule being inhibitory of Spn uptake by VEC, capsule enhances the escape rate of internalized pneumococci and thereby promotes translocation. Upon investigation, we determined that capsule protected Spn against intracellular killing by VEC and H2O2-mediated killing in vitro. Using a nitroblue tetrazolium reduction assay and nuclear magnetic resonance (NMR) analyses, purified capsule was confirmed as having antioxidant properties which varied according to serotype. Using an 11-member panel of isogenic capsule-switch mutants, we determined that serotype affected levels of Spn resistance to H2O2-mediated killing in vitro, with killing resistance correlated positively with survival duration within VEC, rate of transcytosis to the basolateral surface, and human attack rates. Experiments with mice supported our in vitro findings, with Spn producing oxidative-stress-resistant type 4 capsule being more organ-invasive than that producing oxidative-stress-sensitive type 2 capsule during bacteremia. Capsule-mediated protection against intracellular killing was also observed for Streptococcus pyogenes and Staphylococcus aureus. We conclude that capsular polysaccharide plays an important role within VEC, serving as an intracellular antioxidant, and that serotype-dependent differences in antioxidant capabilities impact the efficiency of VEC translocation and a serotype's potential for invasive disease. IMPORTANCE Streptococcus pneumoniae (Spn) is the leading cause of invasive disease. Importantly, only a subset of the 100 capsule types carried by Spn cause the majority of serious infections, suggesting that the biochemical properties of capsular polysaccharide are directly tied to virulence. Here, we describe a new function for Spn's capsule-conferring resistance to oxidative stress. Moreover, we demonstrate that capsule promotes intracellular survival of pneumococci within vascular endothelial cells and thereby enhances bacterial translocation across the vasculature and into organs. Using isogenic capsule-switch mutants, we show that different capsule types, i.e., serotypes, vary in their resistance to oxidative stress-mediated killing and that resistance is positively correlated with intracellular survival in an in vitro model, organ invasion during bacteremia in vivo, and epidemiologically established pneumococcal attack rates in humans. Our findings define a new role of capsule and provide an explanation for why certain serotypes of Spn more frequently cause invasive pneumococcal disease.


Assuntos
Cápsulas Bacterianas/fisiologia , Translocação Bacteriana , Células Endoteliais/microbiologia , Streptococcus pneumoniae/fisiologia , Streptococcus pneumoniae/patogenicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Estresse Oxidativo , Fagocitose , Infecções Pneumocócicas/microbiologia , Virulência , Fatores de Virulência
14.
J Clin Microbiol ; 59(7): e0054021, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33883183

RESUMO

Pneumococcal capsules are important in pneumococcal pathogenesis and vaccine development. Although conjugate vaccines have brought about a significant reduction in invasive pneumococcal disease (IPD) caused by vaccine serotypes, the relative serotype prevalence has shifted with the dramatic emergence of serotype 24F in some countries. Here, we describe 14 isolates (13 IPD and 1 non-IPD) expressing a new capsule type, 24C, which resembles 24F but has a novel serological profile. We also describe the antigenic, biochemical, and genetic basis of 24F and 24C and the related serotypes 24A and 24B. Structural studies show that 24B, 24C, and 24F have identical polysaccharide backbones [ß-Ribf-(1→4)-α-Rhap-(1→3)-ß-GlcpNAc-(1→4)-ß-Rhap-(1→4)-ß-Glcp] but with different side chains, as follows: 24F has arabinitol-phosphate and 24B has ribitol-phosphate. 24C has a mixture of 24F and 24B repeating units, with the ratio of ribitol to arabinitol being strain dependent. In contrast, the 24A capsule has a backbone without ß-Ribf but with arabinitol-phosphate and phosphocholine side chains. These structures indicate that factor-sera 24d and 24e recognize arabinitol and ribitol, respectively, which explains the serology of serogroup 24, including those of 24C. The structures can be genetically described by the bispecificity of wcxG, which is capable of transferring arabinitol or ribitol when arabinitol is limiting. Arabinitol is likely not produced in 24B but is produced in reduced amounts in 24C due to various mutations in abpA or abpB genes. Our findings demonstrate how pneumococci modulate their capsule structure and immunologic properties with small genetic changes, thereby evading host immune responses. Our findings also suggest a potential for new capsule types within serogroup 24.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae/genética , Vacinas Conjugadas
15.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925509

RESUMO

The structure of the exopolysaccharide capsule of Streptococcus pneumoniae is defined by the genetic arrangement of the capsule operon allowing the unequivocal identification of the pneumococcal serotype. Here, we investigated the environment-dependent composition of the polysaccharide structure of S. pneumoniae serotype 6F. When grown in a chemically defined medium (CDM) with glucose versus galactose, the exopolysaccharide capsule of the serotype 6F strains reveals a ratio of 1/0.6 or 1/0.3 for galactose/glucose in the capsule by 1H-NMR analyses, respectively. Increased production of the capsule precursor UDP-glucose has been identified by 31P-NMR in CDM with glucose. Flow cytometric experiments using monoclonal antibodies showed decreased labelling of Hyp6AG4 (specific for serotype 6A) antibodies when 6F is grown in glucose as compared to galactose, which mirrors the 1H-NMR results. Whole-genome sequencing analyses of serotype 6F isolates suggested that the isolates evolved during two different events from serotype 6A during the time when the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced. In conclusion, this study shows differences in the capsular structure of serotype 6F strains using glucose as compared to galactose as the carbon source. Therefore, 6F strains may show slightly different polysaccharide composition while colonizing the human nasopharynx (galactose rich) as compared to invasive locations such as the blood (glucose rich).


Assuntos
Carbono/metabolismo , Polissacarídeos Bacterianos/química , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Anticorpos Monoclonais/metabolismo , Evolução Biológica , Citometria de Fluxo , Galactose/metabolismo , Genoma Bacteriano , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Nasofaringe/microbiologia , Fósforo , Filogenia , Infecções Pneumocócicas/microbiologia , Sorogrupo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação
17.
Vaccine ; 38(51): 8145-8153, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33162203

RESUMO

Pneumococcal conjugate vaccines (PCVs) have been effective in reducing the disease burden caused by Streptococcus pneumoniae. The first licensed PCV (PCV7) was composed of capsular polysaccharides from seven serotypes. This was followed by PCV10, then PCV13, and currently there are a number of higher valency vaccines in development. As part of licensure, new vaccine iterations require assessment of immunogenicity. Since some antibodies can be non-functional, measuring functional antibodies is desirable. To meet this need, opsonophagocytic assays (OPAs) have been developed. Previous studies have shown there can be significant variations in OPA results from different laboratories. We have previously shown that standardizing OPA data using reference serum 007sp can decrease this variation. To extend this approach to additional serotypes, a panel of sera was tested by five laboratories using a multiplexed OPA for serotypes 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20B, 22F, and 33F. Each sample was tested in five runs with 007sp tested three times in each run. Results were analyzed using a mixed effects ANOVA model. Standardization of the results significantly decreased the inter-laboratory variation for some serotypes. For serotypes 2, 8, and 11A, the variability was reduced by 40%, 45%, and 40%, respectively. For serotypes 12F, 17F, and 20B, the reductions were more modest (14%, 19%, and 24%, respectively). Standardization had little effect for the remaining serotypes. In many cases, the impact of normalization was blunted by the results from five sera that were collected after an extended post-vaccination interval. We have previously reported consensus values for 007sp for 13 serotypes, as well as the creation of a calibration serum panel ("Ewha Panel A"). Here, we report consensus values for 11 additional serotypes for 007sp and the creation of a second serum panel ("Ewha Panel B"). These consensus values will facilitate the development of next-generation PCVs.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Anticorpos Antibacterianos , Calibragem , Humanos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , Vacinas Conjugadas
18.
J Basic Microbiol ; 60(10): 905-915, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32852853

RESUMO

Streptococcus pneumoniae (the pneumococcus) has wall teichoic acid (WTA) and lipoteichoic acid (LTA) expressing the Forssman antigen (FA). Two lectins, Dolichos biflorus agglutinin (DBA) and Helix pomatia agglutinin (HPA), are known to bind FA. To determine the molecular structure targeted by these two lectins, different pneumococcal strains were studied for DBA/HPA binding with flow cytometry and fluorescence microscopy. Genetic experiments were used to further examine the lectins' molecular target. Twelve strains were positive for DBA binding, whereas three were negative. Super-resolution microscopy showed that DBA stained only the subcapsular area of pneumococci. The three DBA nonbinders showed no phosphorylcholine esterase (Pce) activity in vitro, whereas 10 DBA binders displayed Pce activity (the remaining two strains were DBA binders with no Pce activity in vitro). The pcegene sequence for 10 representative strains revealed two functional pce alleles, the previously recognized "allele A" and a newly discovered "allele B" (with 12 additional nucleotides). Isolates with allele B showed no Pce activity in vitro but did bind to DBA, indicating allele B Pce is functional in vivo. Genetic transfer experiments confirmed that either allele is sufficient (and necessary) for DBA binding. The three DBA nonbinders had various mutations that affected Pce function. Observations with HPA were identical to those with DBA. We show that DBA and HPA bind only to the WTA/LTA of pneumococcal isolates with a functional Pce enzyme. A newly discovered Pce variant (allele B) is functional in vivo but nonfunctional when assayed in vitro.


Assuntos
Lectinas/metabolismo , Lectinas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Streptococcus pneumoniae/metabolismo , Alelos , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Mutação , Receptores de Superfície Celular/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Ácidos Teicoicos/metabolismo
19.
Immun Ageing ; 17: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536956

RESUMO

Background: There is increasing recognition of the significance of chronic, low-level inflammation in older adults, or "inflammaging." Innate immune responses and host-bacterial interactions are recognized as key factors in inflammaging. Inflammatory cytokine IL-6, and complement protein C1q have been identified as biomarkers for the development of frailty and aging-related diseases. Older adults are also susceptible to infections with serotypes of Streptococcus pneumoniae that bind ficolin-2, a component of the lectin complement pathway, and low ficolin-2 levels could possibly be involved in such susceptibility. Methods: The aim of our study was to evaluate complement pathway components and biomarkers for inflammaging among older adults in order to investigate potential innate immune mechanisms that may account for susceptibility to infections in this population. We compared inflammatory markers, as well as components/activity of the classical and lectin complement pathways between healthy older and younger adults. We hypothesized that older adults would have higher levels of inflammatory markers and C1q, and lower levels of lectin pathway components. Older (≥70 years old) and younger (19-54 years old) adults without significant smoking history or chronic medical conditions were eligible for participation. Inflammatory markers (IL-6, TNF-α, CRP), classical complement pathway activity (CH50) and protein levels (C1q, C3, C4), and lectin pathway (MBL levels/activity, CL-L1, MASP-1/2/3, MAp44, MAp19, and H/M/L-ficolin) were compared between groups. Results: Older adults had significantly higher mean levels of IL-6 and TNF-α. There were no significant differences in lectin pathway components between older and younger adults. Unexpectedly, mean C1q was significantly higher in the younger group in both unadjusted and adjusted analyses. There was also a significant association between race and C1q levels, but this association did not completely account for the observed differences between age groups. Conclusions: We did not observe deficiencies in lectin pathway components to account for increased susceptibility to ficolin-binding serotypes of S. pneumoniae. Elevated levels of inflammatory cytokines in older adults are suggestive of inflammaging. However, the observed age and race-associated changes in C1q have not been previously reported in the populations included in our study. These findings are relevant to the investigation of C1q in aging-related pathology, and for its proposed role as a biomarker for frailty and disease.

20.
mBio ; 11(3)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430472

RESUMO

Streptococcus pneumoniae (pneumococcus) is a major human pathogen producing structurally diverse capsular polysaccharides. Widespread use of highly successful pneumococcal conjugate vaccines (PCVs) targeting pneumococcal capsules has greatly reduced infections by the vaccine types but increased infections by nonvaccine serotypes. Herein, we report a new and the 100th capsule type, named serotype 10D, by determining its unique chemical structure and biosynthetic roles of all capsule synthesis locus (cps) genes. The name 10D reflects its serologic cross-reaction with serotype 10A and appearance of cross-opsonic antibodies in response to immunization with 10A polysaccharide in a 23-valent pneumococcal vaccine. Genetic analysis showed that 10D cps has three large regions syntenic to and highly homologous with cps loci from serotype 6C, serotype 39, and an oral streptococcus strain (S. mitis SK145). The 10D cps region syntenic to SK145 is about 6 kb and has a short gene fragment of wciNα at the 5' end. The presence of this nonfunctional wciNα fragment provides compelling evidence for a recent interspecies genetic transfer from oral streptococcus to pneumococcus. Since oral streptococci have a large repertoire of cps loci, widespread PCV usage could facilitate the appearance of novel serotypes through interspecies recombination.IMPORTANCE The polysaccharide capsule is essential for the pathogenicity of pneumococcus, which is responsible for millions of deaths worldwide each year. Currently available pneumococcal vaccines are designed to elicit antibodies to the capsule polysaccharides of the pneumococcal isolates commonly causing diseases, and the antibodies provide protection only against the pneumococcus expressing the vaccine-targeted capsules. Since pneumococci can produce different capsule polysaccharides and therefore reduce vaccine effectiveness, it is important to track the appearance of novel pneumococcal capsule types and how these new capsules are created. Herein, we describe a new and the 100th pneumococcal capsule type with unique chemical and serological properties. The capsule type was named 10D for its serologic similarity to 10A. Genetic studies provide strong evidence that pneumococcus created 10D capsule polysaccharide by capturing a large genetic fragment from an oral streptococcus. Such interspecies genetic exchanges could greatly increase diversity of pneumococcal capsules and complicate serotype shifts.


Assuntos
Cápsulas Bacterianas/química , Cápsulas Bacterianas/classificação , Sorogrupo , Streptococcus pneumoniae/classificação , Estudos Transversais , Humanos , Soros Imunes , Imunização , Fagocitose , Vacinas Pneumocócicas , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA