Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Genomics ; 116(2): 110793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220132

RESUMO

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Humanos , Animais , Camundongos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos
2.
Immunol Cell Biol ; 101(10): 923-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37721869

RESUMO

The emergence of large language models (LLMs) and assisted artificial intelligence (AI) technologies have revolutionized the way in which we interact with technology. A recent symposium at the Walter and Eliza Hall Institute explored the current practical applications of LLMs in medical research and canvassed the emerging ethical, legal and social implications for the use of AI-assisted technologies in the sciences. This paper provides an overview of the symposium's key themes and discussions delivered by diverse speakers, including early career researchers, group leaders, educators and policy-makers highlighting the opportunities and challenges that lie ahead for scientific researchers and educators as we continue to explore the potential of this cutting-edge and emerging technology.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Tecnologia
3.
Blood Adv ; 7(21): 6506-6519, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37567157

RESUMO

Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Camundongos , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
4.
Commun Biol ; 6(1): 821, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550477

RESUMO

Intratumoural heterogeneity is associated with poor outcomes in breast cancer. To understand how malignant clones survive and grow in metastatic niches, in vivo models using cell lines and patient-derived xenografts (PDX) have become the gold standard. Injections of cancer cells in orthotopic sites (spontaneous metastasis assays) or into the vasculature (experimental metastasis assays) have been used interchangeably to study the metastatic cascade from early events or post-intravasation, respectively. However, less is known about how these different routes of injection impact heterogeneity. Herein we directly compared the clonality of spontaneous and experimental metastatic assays using the human cell line MDA-MB-231 and a PDX model. Genetic barcoding was used to study the fitness of the subclones in primary and metastatic sites. Using spontaneous assays, we found that intraductal injections resulted in less diverse tumours compared to other routes of injections. Using experimental metastasis assays via tail vein injection of barcoded MDA-MB-231 cells, we also observed an asymmetry in metastatic heterogeneity between lung and liver that was not observed using spontaneous metastasis assays. These results demonstrate that these assays can result in divergent clonal outputs in terms of metastatic heterogeneity and provide a better understanding of the biases inherent to each technique.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias Pulmonares/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Pulmão/patologia , Fígado/patologia , Células Clonais/patologia
6.
Sci Immunol ; 8(85): eabo4365, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37450574

RESUMO

Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Adulto , Humanos , Timo , Perfilação da Expressão Gênica
7.
Front Immunol ; 14: 1106652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077921

RESUMO

The αß and γδ T cell lineages both differentiate in the thymus from common uncommitted progenitors. The earliest stage of T cell development is known as CD4-CD8- double negative 1 (DN1), which has previously been shown to be a heterogenous mixture of cells. Of these, only the CD117+ fraction has been proposed to be true T cell progenitors that progress to the DN2 and DN3 thymocyte stages, at which point the development of the αß and γδ T cell lineages diverge. However, recently, it has been shown that at least some γδ T cells may be derived from a subset of CD117- DN thymocytes. Along with other ambiguities, this suggests that T cell development may not be as straightforward as previously thought. To better understand early T cell development, particularly the heterogeneity of DN1 thymocytes, we performed a single cell RNA sequence (scRNAseq) of mouse DN and γδ thymocytes and show that the various DN stages indeed comprise a transcriptionally diverse subpopulations of cells. We also show that multiple subpopulations of DN1 thymocytes exhibit preferential development towards the γδ lineage. Furthermore, specific γδ-primed DN1 subpopulations preferentially develop into IL-17 or IFNγ-producing γδ T cells. We show that DN1 subpopulations that only give rise to IL-17-producing γδ T cells already express many of the transcription factors associated with type 17 immune cell responses, while the DN1 subpopulations that can give rise to IFNγ-producing γδ T cell already express transcription factors associated with type 1 immune cell responses.


Assuntos
Interleucina-17 , Timócitos , Camundongos , Animais , Interleucina-17/metabolismo , Timo , Diferenciação Celular , Fatores de Transcrição/metabolismo
8.
Trends Genet ; 39(5): 358-380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842901

RESUMO

Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco , Evolução Biológica , Células Clonais/patologia
9.
Eur J Immunol ; 53(11): e2249816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303448

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. This article provides protocols with top ticks and pitfalls for preparation and successful generation of mouse and human DC from different cellular sources, such as murine BM and HoxB8 cells, as well as human CD34+ cells from cord blood, BM, and peripheral blood or peripheral blood monocytes. We describe murine cDC1, cDC2, and pDC generation with Flt3L and the generation of BM-derived DC with GM-CSF. Protocols for human DC generation focus on CD34+ cell culture on OP9 cell layers for cDC1, cDC2, cDC3, and pDC subset generation and DC generation from peripheral blood monocytes (MoDC). Additional protocols include enrichment of murine DC subsets, CRISPR/Cas9 editing, and clinical grade human DC generation. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Assuntos
Células Dendríticas , Monócitos , Animais , Camundongos , Humanos , Antígenos CD34 , Fenótipo , Diferenciação Celular
10.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108634

RESUMO

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Assuntos
Switching de Imunoglobulina , Recombinação Genética , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/metabolismo
11.
Nat Rev Cancer ; 22(11): 609-624, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982229

RESUMO

Tumours are often composed of a multitude of malignant clones that are genomically unique, and only a few of them may have the ability to escape cancer therapy and grow as symptomatic lesions. As a result, tumours with a large degree of genomic diversity have a higher chance of leading to patient death. However, clonal fate can be driven by non-genomic features. In this context, new technologies are emerging not only to track the spatiotemporal fate of individual cells and their progeny but also to study their molecular features using various omics analysis. In particular, the recent development of cellular barcoding facilitates the labelling of tens to millions of cancer clones and enables the identification of the complex mechanisms associated with clonal fate in different microenvironments and in response to therapy. In this Review, we highlight the recent discoveries made using lentiviral-based cellular barcoding techniques, namely genetic and optical barcoding. We also emphasize the strengths and limitations of each of these technologies and discuss some of the key concepts that must be taken into consideration when one is designing barcoding experiments. Finally, we suggest new directions to further improve the use of these technologies in cancer research.


Assuntos
Neoplasias , Humanos , Células Clonais , Neoplasias/genética , Microambiente Tumoral/genética
12.
Cell Stem Cell ; 29(5): 655-656, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523132

RESUMO

Antigen presentation is typically regarded as the domain of immune cells such as dendritic cells and B cells. Hernandez-Malmierca et al. (2022) upend this notion by observing that hematopoietic stem and progenitor cells process and present antigen via major histocompatibility class II as a means of CD4+ T cell-mediated immune surveillance.


Assuntos
Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Apresentação de Antígeno , Linfócitos B , Células Dendríticas , Células-Tronco
13.
Nature ; 601(7891): 125-131, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880496

RESUMO

All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear1, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness2. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells3, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.


Assuntos
Competição entre as Células , Células Clonais/patologia , Leucemia Mieloide Aguda/patologia , Análise de Célula Única , Animais , Competição entre as Células/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Inibidor Secretado de Peptidases Leucocitárias/metabolismo
15.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34550360

RESUMO

Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.


Assuntos
Histona Acetiltransferases/metabolismo , Neovascularização Patológica/metabolismo , Acetilação , Animais , Movimento Celular/fisiologia , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Feminino , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
16.
Nat Methods ; 18(9): 997-1012, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341583

RESUMO

Understanding intratumoral heterogeneity-the molecular variation among cells within a tumor-promises to address outstanding questions in cancer biology and improve the diagnosis and treatment of specific cancer subtypes. Single-cell analyses, especially RNA sequencing and other genomics modalities, have been transformative in revealing novel biomarkers and molecular regulators associated with tumor growth, metastasis and drug resistance. However, these approaches fail to provide a complete picture of tumor biology, as information on cellular location within the tumor microenvironment is lost. New technologies leveraging multiplexed fluorescence, DNA, RNA and isotope labeling enable the detection of tens to thousands of cancer subclones or molecular biomarkers within their native spatial context. The expeditious growth in these techniques, along with methods for multiomics data integration, promises to yield a more comprehensive understanding of cell-to-cell variation within and between individual tumors. Here we provide the current state and future perspectives on the spatial technologies expected to drive the next generation of research and diagnostic and therapeutic strategies for cancer.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas/métodos , Neoplasias/diagnóstico por imagem , Proteínas/análise , Animais , Humanos , Camundongos Transgênicos , Imagem Multimodal , Neoplasias/genética , Neoplasias/patologia , Análise de Célula Única/métodos , Microambiente Tumoral
17.
Immunity ; 54(6): 1338-1351.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33862015

RESUMO

Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.


Assuntos
Células Dendríticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Feminino , Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo
18.
Nat Cell Biol ; 23(3): 219-231, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33649477

RESUMO

Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Membrana/farmacologia , RNA-Seq , Análise de Célula Única , Transcriptoma/efeitos dos fármacos , Animais , Linhagem da Célula , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
19.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4588-4602, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32997635

RESUMO

Nonparametric dimensionality reduction techniques, such as t-distributed Stochastic Neighbor Embedding (t-SNE) and uniform manifold approximation and projection (UMAP), are proficient in providing visualizations for data sets of fixed sizes. However, they cannot incrementally map and insert new data points into an already provided data visualization. We present self-organizing nebulous growths (SONG), a parametric nonlinear dimensionality reduction technique that supports incremental data visualization, i.e., incremental addition of new data while preserving the structure of the existing visualization. In addition, SONG is capable of handling new data increments, no matter whether they are similar or heterogeneous to the already observed data distribution. We test SONG on a variety of real and simulated data sets. The results show that SONG is superior to Parametric t-SNE, t-SNE, and UMAP in incremental data visualization. Especially, for heterogeneous increments, SONG improves over Parametric t-SNE by 14.98% on the Fashion MNIST data set and 49.73% on the MNIST data set regarding the cluster quality measured by the adjusted mutual information scores. On similar or homogeneous increments, the improvements are 8.36% and 42.26%, respectively. Furthermore, even when the abovementioned data sets are presented all at once, SONG performs better or comparable to UMAP and superior to t-SNE. We also demonstrate that the algorithmic foundations of SONG render it more tolerant to noise compared with UMAP and t-SNE, thus providing greater utility for data with high variance, high mixing of clusters, or noise.

20.
Genomics Proteomics Bioinformatics ; 19(2): 223-242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307245

RESUMO

Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial-mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.


Assuntos
Células-Tronco Pluripotentes , Epitélio Pigmentado da Retina , Diferenciação Celular/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA