Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2308983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332439

RESUMO

Discotic liquid crystals (DLCs) are widely acknowledged as a class of organic semiconductors that can harmonize charge carrier mobility and device processability through supramolecular self-assembly. In spite of circumventing such a major challenge in fabricating low-cost charge transport layers, DLC-based hole transport layers (HTLs) have remained elusive in modern organo-electronics. In this work, a minimalistic design strategy is envisioned to effectuate a cyanovinylene-integrated pyrene-based discotic liquid crystal (PY-DLC) with a room-temperature columnar hexagonal mesophase and narrow bandgap for efficient semiconducting behavior. Adequately combined photophysical, electrochemical, and theoretical studies investigate the structure-property relations, logically correlating them with efficient hole transport. With a low reorganization energy of 0.2 eV, PY-DLC exhibits superior charge extraction ability from the contact electrodes at low values of applied voltage, achieving an electrical conductivity of 3.22 × 10-4 S m-1, the highest reported value for any pristine DLC film in a vertical charge transport device. The columnar self-assembly, in conjunction with solution-processable self-healed films, results in commendably elevated values of hole mobility (≈10-3 cm2 V-1s-1). This study provides an unprecedented constructive outlook toward the development of DLC semiconductors as practical HTLs in organic electronics.

2.
J Colloid Interface Sci ; 652(Pt B): 1784-1792, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683406

RESUMO

Producing hydrogen peroxide (H2O2) from H2O and O2 under visible light irradiation is a promising solar-to-chemical energy conversion technology. Hydrogen peroxide has versatile applications as a green oxidant and liquid energy carrier but has been produced through energy-intensive and complex anthraquinone processes. Herein, we report the rational design of efficient and stable porous organic polymer (POP) containing redox centers, anthraquinone photocatalyst (ANQ-POP) for solar H2O2 production. ANQ-POP is readily synthesized with stable dioxin-linkages via efficient one-pot, transition-metal-free nucleophilic aromatic substitution reactions between 1,2,3,4,5,6,7,8-octafluoro-9,10-anthraquinone (OFANQ) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). Exhibiting a fibrillar morphology, ANQ-POP boasts a high surface area of 380 m2∙g-1 and demonstrates thermal stability. With 10 % ethanol, ANQ-POP yields an H2O2 production rate of 320 µmol g-1 under visible light irradiation. Moreover, ANQ-POP alone can efficiently produce H2O2 without any photosensitizers and cocatalysts. Density functional theory calculations reveal that the quinone groups of the anthraquinone moieties can serve as redox centers for H2O2 production under light irradiation. Furthermore, unlike most conventional photocatalysts, it can produce H2O2 using only water and air by catalyzing both oxygen reduction and evolution reactions under light irradiation. Our findings provide an efficient, eco-friendly pathway for photocatalytic production of H2O2 under mild reaction conditions using a dioxin-derived POP-based photocatalyst.

3.
Nanoscale ; 14(20): 7621-7633, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35545095

RESUMO

The rational synthesis of durable, earth-abundant efficient electrocatalysts for the oxygen evolution reaction (OER) from water is one of the most important routes for storing renewable energy and minimizing fossil fuel combustion. The prime hurdles for effectively utilizing commercial RuO2 as (OER) electrocatalysts are its very low stability, catalyst deactivation, and high cost. In this work, we explored a Ru-integrated porous organic polymer (Ru@Bpy-POP) by a facile one-pot Friedel-Crafts alkylation strategy between redox-active (Ru(demob)3Cl2) and a carbazole unit, which is composed of unique features including an extended framework unit, isolated active sites, and tunable electrode kinetics. Ru@Bpy-POP can serve as a bridge between a Metal-Organic Framework (MOF) and POP-based catalytic systems with a balanced combination of covalent bonds (structural stability) and open metal sites (single site catalysis). Ru@Bpy-POP, deposited on a three-dimensional nickel foam electrode support, exhibits a promising electrocatalytic OER activity with an ultra-low ruthenium loading compared to a benchmark RuO2 catalyst, providing an overpotential of about 270 mV to reach 10 mA cm-2 in an alkaline medium. Moreover, a high current density of 248 mA cm-2 was achieved for the Ru@Bpy-POP catalyst at only 1.6 V (vs. RHE), which is much higher than 91 mA cm-2 for commercial RuO2. The robust, albeit highly conjugated, POP framework not only triggered facile electro-kinetics but also suppressed aggregation and metallic corrosion during electrolysis. In particular, the benefits of covalent integration of distinct Ru sites into the framework can modulate intermediate adsorption and charge density, which contributes to its exceptional OER activity. All of the critical steps involved in OER are complemented by Density Functional Theory (DFT) calculations, which suggest that electrocatalytic water oxidation proceeds from a closed-shell configuration to open-shell electronic configurations with high-spin states. These open-shell configurations are more stable than their closed-shell counterparts by 1 eV, improving the overall catalytic activity.

4.
J Mater Chem B ; 10(16): 3032-3038, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35411354

RESUMO

Nanoscale assemblies of amphiphiles have been vividly explored in pharmaceutical formulations as drug nanocarriers. Aqueous interfaces of liquid crystals (LCs) are known to direct the self-assembly of a range of amphiphiles. These amphiphile-decorated interfaces of LCs have evoked interest for applications as diverse as the detection of disease markers, screening of toxins, mimicking complex biomolecular interactions, and cell-based sensing. Aiming to explore these interfaces for encapsulation and enzyme-triggered release, we report a simple and rational design of enzyme-responsive LC interfaces programmed with a cleavable non-ionic surfactant. We encapsulated a hydrophobic dye within the surfactant micelles and investigated the enzyme-triggered dye release. Interestingly, we found that LC droplets, when decorated with the dye-loaded micelles, offer significant advantages over the conventional micellar nanocarriers. The LC droplets showed controlled release features which weren't affected at high dilutions. Our work, although exploratory in nature, provides fresh approaches for tailoring LC interfaces as vehicles for drug delivery.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Micelas , Tensoativos , Água/química
5.
ACS Appl Mater Interfaces ; 12(11): 13248-13255, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32046492

RESUMO

The exfoliation of covalent organic frameworks into covalent organic nanosheets (CONs) not only helps to reduce fluorescence turn-off phenomena but also provides well-exposed active sites for fast response and recovery for various applications. The present work is an example of rational designing of a structure constructed by condensing triaminoguanidinium chloride (TGCl), an intrinsic ionic linker, with a fluorophore, 2, 5-dimethoxyterephthalaldehyde (DA), to produce highly fluorescent self-exfoliable ionic CONs (DATGCl-iCONs). These fluorescent iCONs are able to sense fluoride ions selectively down to the ppb level via the fluorescence turn-off mechanism. A closer look at the quenching mechanism via NMR, zeta potential measurement, lifetime measurement, and density functional theory calculations reveals unique proton-triggered fluorescence switching behavior of newly synthesized DATGCl-iCONs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA