Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557875

RESUMO

Numerous fungal plant pathogens can infect fresh fruits and vegetables during transit and storage conditions. The resulting infections were mainly controlled by synthetic fungicides, but their application has many drawbacks associated with the threatened environment and human health. Therefore, the use of natural plants with antimicrobial potential could be a promising alternative to overcome the side effects of fungicides. In this regard, this study aimed at evaluating the antifungal activity potential of saffron petal extract (SPE) against three mains important fungal pathogens: Rhizopus stolonifer, Penicillium digitatum and Botritys cinerea, which cause rot decay on the tomato, orange and apple fruits, respectively. In addition, the organic composition of SPE was characterized by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and its biochemical, and gas chromatography-mass spectrometry (GC-MS) analyses were carried out. The obtained results highlighted an increased inhibition rate of the mycelial growth and spore germination of the three pathogenic fungi with increasing SPE concentrations. The mycelial growth and spore germination were completely inhibited at 10% of the SPE for Rhizopus stolonifer and Penicillium digitatum and at 5% for B. cinerea. Interestingly, the in vivo test showed the complete suppression of Rhizopus rot by the SPE at 10%, and a significant reduction of the severity of grey mold disease (37.19%) and green mold, when applied at 5 and 10%, respectively. The FT-IR spectra showed characteristic peaks and a variety of functional groups, which confirmed that SPE contains phenolic and flavonoid components. In addition, The average value of the total phenolic content, flavonoid content and half-maximal inhibitory concentration (IC50) were 3.09 ± 0.012 mg GAE/g DW, 0.92 ± 0.004 mg QE/g DW and 235.15 ± 2.12 µg/mL, respectively. A volatile analysis showed that the most dominant component in the saffron petal is 2(5H)-Furanone (92.10%). Taken together, it was concluded that SPE could be used as an alternative to antioxidant and antifungal compounds for the control of postharvest diseases in fruits.


Assuntos
Produtos Biológicos , Crocus , Fungicidas Industriais , Penicillium , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Fungos , Frutas , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia
2.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615378

RESUMO

Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.


Assuntos
Crocus , Crocus/química , Quempferóis/química , Flavonoides/química , Antioxidantes/análise , Fenóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
J Microbiol Biotechnol ; 20(2): 332-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20208437

RESUMO

The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at 45 degrees Celsius. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and 60 degrees Celsius, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher K(m) (11.11 mM) and lower V(max) (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Mucor/enzimologia , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Cinética , Lipase/genética , Lipase/isolamento & purificação , Lipase/metabolismo , Mucor/química , Mucor/genética , Estabilidade Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA