Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Rev Clin Oncol ; 21(7): 489-500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760500

RESUMO

mRNA vaccines have been revolutionary in terms of their rapid development and prevention of SARS-CoV-2 infections during the COVID-19 pandemic, and this technology has considerable potential for application to the treatment of cancer. Compared with traditional cancer vaccines based on proteins or peptides, mRNA vaccines reconcile the needs for both personalization and commercialization in a manner that is unique to each patient but not beholden to their HLA haplotype. A further advantage of mRNA vaccines is the availability of engineering strategies to improve their stability while retaining immunogenicity, enabling the induction of complementary innate and adaptive immune responses. Thus far, no mRNA-based cancer vaccines have received regulatory approval, although several phase I-II trials have yielded promising results, including in historically poorly immunogenic tumours. Furthermore, many early phase trials testing a wide range of vaccine designs are currently ongoing. In this Review, we describe the advantages of cancer mRNA vaccines and advances in clinical trials using both cell-based and nanoparticle-based delivery methods, with discussions of future combinations and iterations that might optimize the activity of these agents.


Assuntos
COVID-19 , Vacinas Anticâncer , Neoplasias , Vacinas de mRNA , Humanos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/prevenção & controle , Neoplasias/genética , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , RNA Mensageiro/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Ensaios Clínicos como Assunto
2.
Nat Genet ; 55(12): 2211-2223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945901

RESUMO

Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Linfócitos T CD8-Positivos , Epigênese Genética
3.
Front Immunol ; 14: 1116034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575220

RESUMO

Background: Monocytes and monocyte-derived tumor infiltrating cells have been implicated in the immunosuppression and immune evasion associated with pancreatic adenocarcinoma (PDAC). Yet, precisely how monocytes in the periphery and tumor microenvironment in patients with intraductal papillary mucinous neoplasm (IPMN), a precursor lesion to PDAC, change during disease progression has not been defined. Here we functionally profiled the peripheral immune system and characterized the tumor microenvironment of patients with both IPMN and PDAC. We also tested if sera from patients with IPMN and PDAC functionally reprogram monocytes relative to that of healthy donors. Methods: Pancreatic tissue and peripheral blood were collected at the time of resection from 16 patients with IPMN and 32 patients with PDAC. Peripheral blood and pancreatic tissue/tumor were immunophenotyped using flow cytometry. Whole blood was plated and incubated with R848 (a TLR 7/8 agonist) or LPS (a TLR4 agonist) for 6 hours and TNF expression in monocytes was measured by flow cytometry to measure monocyte activation. To test if TLR sensitivity is determined by factors in patient sera, we preconditioned healthy donor monocytes in serum from PDAC (n=23), IPMN (n=15), or age-matched healthy donors (n=10) followed by in vitro stimulation with R848 or LPS and multiplex cytokine measurements in the supernatant. Results: TNF expression in R848-stimulated peripheral blood monocytes was higher in patients with low grade vs high grade IPMN (65% vs 32%, p = 0.03) and stage 1 vs stage 2/3 PDAC (58% vs 42%, p = 0.03), this was not observed after LPS stimulation. TLR activation correlated with increasing grade of dysplasia from low grade IPMN to high grade IPMN. Serum from patients with IPMN and PDAC recapitulated suppression of TNF induction after R848 stimulation in naïve, healthy donor monocytes. Conclusion: Peripheral blood monocyte TNF secretion inversely correlates with the degree of dysplasia in IPMN and cancer stage in PDAC, suggesting innate immune reprogramming as IPMNs progress to invasive disease. These effects are, at least in part, mediated by soluble mediators in sera.


Assuntos
Adenocarcinoma Mucinoso , Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Monócitos/metabolismo , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Lipopolissacarídeos , Hiperplasia/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
4.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072349

RESUMO

BACKGROUND: Antitumor mechanisms of CD4+ T cells remain crudely defined, and means to effectively harness CD4+ T-cell help for cancer immunotherapy are lacking. Pre-existing memory CD4+ T cells hold potential to be leveraged for this purpose. Moreover, the role of pre-existing immunity in virotherapy, particularly recombinant poliovirus immunotherapy where childhood polio vaccine specific immunity is ubiquitous, remains unclear. Here we tested the hypothesis that childhood vaccine-specific memory T cells mediate antitumor immunotherapy and contribute to the antitumor efficacy of polio virotherapy. METHODS: The impact of polio immunization on polio virotherapy, and the antitumor effects of polio and tetanus recall were tested in syngeneic murine melanoma and breast cancer models. CD8+ T-cell and B-cell knockout, CD4+ T-cell depletion, CD4+ T-cell adoptive transfer, CD40L blockade, assessments of antitumor T-cell immunity, and eosinophil depletion defined antitumor mechanisms of recall antigens. Pan-cancer transcriptome data sets and polio virotherapy clinical trial correlates were used to assess the relevance of these findings in humans. RESULTS: Prior vaccination against poliovirus substantially bolstered the antitumor efficacy of polio virotherapy in mice, and intratumor recall of poliovirus or tetanus immunity delayed tumor growth. Intratumor recall antigens augmented antitumor T-cell function, caused marked tumor infiltration of type 2 innate lymphoid cells and eosinophils, and decreased proportions of regulatory T cells (Tregs). Antitumor effects of recall antigens were mediated by CD4+ T cells, limited by B cells, independent of CD40L, and dependent on eosinophils and CD8+ T cells. An inverse relationship between eosinophil and Treg signatures was observed across The Cancer Genome Atlas (TCGA) cancer types, and eosinophil depletion prevented Treg reductions after polio recall. Pretreatment polio neutralizing antibody titers were higher in patients living longer, and eosinophil levels increased in the majority of patients, after polio virotherapy. CONCLUSION: Pre-existing anti-polio immunity contributes to the antitumor efficacy of polio virotherapy. This work defines cancer immunotherapy potential of childhood vaccines, reveals their utility to engage CD4+ T-cell help for antitumor CD8+ T cells, and implicates eosinophils as antitumor effectors of CD4+ T cells.


Assuntos
Tétano , Vacinas , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Eosinófilos , Ligante de CD40 , Imunidade Inata , Linfócitos , Linfócitos T Reguladores
5.
Sci Transl Med ; 15(682): eabn5649, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753564

RESUMO

D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Imunotoxinas , Humanos , Animais , Camundongos , Glioblastoma/patologia , Imunotoxinas/genética , Linfócitos T CD8-Positivos , Imunidade Adaptativa , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
6.
Crit Care Explor ; 4(12): e0799, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506827

RESUMO

The COVID-19 pandemic has claimed over eight hundred thousand lives in the United States alone, with older individuals and those with comorbidities being at higher risk of severe disease and death. Although severe acute respiratory syndrome coronavirus 2-induced hyperinflammation is one of the mechanisms underlying the high mortality, the association between age and innate immune responses in COVID-19 mortality remains unclear. DESIGN: Flow cytometry of fresh blood and multiplexed inflammatory chemokine measurements of sera were performed on samples collected longitudinally from our cohort. Aggregate impact of comorbid conditions was calculated with the Charlson Comorbidity Index, and association between patient factors and outcomes was calculated via Cox proportional hazard analysis and repeated measures analysis of variance. SETTING: A cohort of severely ill COVID-19 patients requiring ICU admission was followed prospectively. PATIENTS: In total, 67 patients (46 male, age 59 ± 14 yr) were included in the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Mortality in our cohort was 41.8%. We identified older age (hazard ratio [HR] 1.09 [95% CI 1.07-1.11]; p = 0.001), higher comorbidity index (HR 1.24 [95% CI 1.14-1.35]; p = 0.039), and hyponatremia (HR 0.90 [95% CI 0.82-0.99]; p = 0.026) to each independently increase risk for death in COVID-19. We also found that neutrophilia (R = 0.2; p = 0.017), chemokine C-C motif ligand (CCL) 2 (R = 0.3; p = 0.043), and C-X-C motif chemokine ligand 9 (CXCL9) (R = 0.3; p = 0.050) were weakly but significantly correlated with mortality. Older age was associated with lower monocyte (R = -0.2; p = 0.006) and cluster of differentiation (CD) 16+ cell counts (R = -0.2; p = 0.002) and increased CCL11 concentration (R = 0.3; p = 0.050). Similarly, younger patients (< 65 yr) demonstrated a rise in CD4 (b-coefficient = 0.02; p = 0.036) and CD8 (0.01; p = 0.001) counts, as well as CCL20 (b-coefficient = 6.8; p = 0.036) during their ICU stay. This CD8 count rise was also associated with survival (b-coefficient = 0.01; p = 0.023). CONCLUSIONS: Age, comorbidities, and hyponatremia independently predict mortality in severe COVID-19. Neutrophilia and higher CCL2 and CXCL9 levels are also associated with higher mortality, while independent of age.

7.
Nucleic Acid Ther ; 32(6): 449-456, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36346283

RESUMO

The success of mRNA vaccines against COVID-19 is nothing short of a medical revolution. Given its chemical lability the use of mRNA as a therapeutic has been counterintuitive and met with skepticism. The development of mRNA-based COVID-19 vaccines was the culmination of long and painstaking efforts by many investigators spanning over 30 years and culminating with the seminal studies of Kariko and Weissman. This review will describe one chapter in this saga, studies that have shown that mRNA can function as a therapeutic. It started with our seminal observation that dendritic cells (DCs) transfected with mRNA in vitro administered to mice inhibits tumor growth, and led to first-in-human clinical trials with mRNA vaccines in cancer patients. The clinical development of this patient-specific DCs-mRNA approach and use on a larger scale was hindered by the challenges associated with personalized cell therapies. Confirmed and extended by many investigators, these studies did serve as impetus and motivation that led scientists to persevere, eventually leading to the development of simple, broadly applicable, and highly effective protocols of directly injecting mRNA into patients, culminating in the COVID-19 mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Vacinas de mRNA
8.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230591

RESUMO

Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored. Models of triple-negative breast cancer (TNBC), which are classically immunosuppressive and difficult to treat clinically, were used to characterize the immunophenotypic changes after ECE ablation. In poorly invasive TNBC rodent models, the injury to the tumor induced by ECE increased tumor infiltrating lymphocytes (TILs) and reduced tumor growth. In a metastatic TNBC model (4T1), TILs did not increase after ECE ablation, though lung metastases were reduced. 4T1 tumors secrete high levels of granulocytic colony stimulating factor (G-CSF), which induces a suppressive milieu of granulocytic myeloid-derived suppressor cells (gMDSCs) aiding in the formation of metastases and suppression of antitumor immunity. We found that a single intratumoral injection of ECE normalized tumor-induced myeloid changes: reducing serum G-CSF and gMDSC populations. ECE also dampened the suppressive strength of gMDSC on CD4 and CD8 cell proliferation, which are crucial for anti-tumor immunity. To demonstrate the utility of these findings, ECE ablation was administered before checkpoint inhibitor (CPI) therapy in the 4T1 model and was found to significantly increase survival compared to a control of saline and CPI. Sixty days after tumor implant no primary tumors or metastatic lung lesions were found in 6/10 mice treated with CPI plus ECE, compared to 1/10 with ECE alone and 0/10 with CPI and saline.

9.
Front Immunol ; 13: 952220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052068

RESUMO

Introduction: B cells are key regulators of immune responses in melanoma. We aimed to explore differences in the histologic location and activation status of B cell follicles in sentinel lymph nodes (SLN) of melanoma patients. Methods: Flow cytometry was performed on fresh tumor draining lymph nodes (LN). Paraffin slides from a separate cohort underwent NanoString Digital Spatial Profiling (DSP)®. After staining with fluorescent markers for CD20 (B cells), CD3 (T cells), CD11c (antigen presenting cells) and a nuclear marker (tumor) was performed, regions of interest (ROI) were selected based on the location of B cell regions (B cell follicles). A panel of 68 proteins was then analyzed from the ROIs. Results: B cell percentage trended higher in patients with tumor in LN (n=3) compared to patients with nSLN (n=10) by flow cytometry. B cell regions from a separate cohort of patients with tumor in the (pSLN) (n=8) vs. no tumor (nSLN) (n=16) were examined with DSP. Within B cell regions of the SLN, patients with pSLN had significantly higher expression of multiple activation markers including Ki-67 compared to nSLN patients. Among 4 patients with pSLN, we noted variability in arrangement of B cell follicles which were either surrounding the tumor deposit or appeared to be infiltrating the tumor. The B cell follicle infiltrative pattern was associated with prolonged recurrence free survival. Conclusion: These data suggest a role for B cell follicles in coordinating effective adaptive immune responses in melanoma when low volume metastatic disease is present in tumor draining LN.


Assuntos
Melanoma , Neoplasias Cutâneas , Biologia , Humanos , Excisão de Linfonodo , Metástase Linfática , Melanoma/patologia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/patologia
10.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36175036

RESUMO

BACKGROUND: We previously reported results from a phase 1 study testing intratumoral recombinant poliovirus, lerapolturev, in 12 melanoma patients. All 12 patients received anti-PD-1 systemic therapy before lerapolturev, and 11 of these 12 patients also received anti-PD-1 after lerapolturev. In preclinical models lerapolturev induces intratumoral innate inflammation that engages antitumor T cells. In the current study, prelerapolturev and postlerapolturev tumor biopsies and blood were evaluated for biomarkers of response. METHODS: The following analyses were performed on tumor tissue (n=11): (1) flow cytometric assessment of immune cell density, (2) NanoString Digital Spatial profiling of protein and the transcriptome, and (3) bulk RNA sequencing. Immune cell phenotypes and responsiveness to in vitro stimulation, including in vitro lerapolturev challenge, were measured in peripheral blood (n=12). RESULTS: Three patients who received anti-PD-1 therapy within 30 days of lerapolturev have a current median progression-free survival (PFS) of 2.3 years and had higher CD8+T cell infiltrates in prelerapolturev tumor biopsies relative to that of 7 patients with median PFS of 1.6 months and lower CD8+T cell infiltrates in prelerapolturev tumor biopsies. In peripheral blood, four patients with PFS 2.3 years (including three that received anti-PD-1 therapy within 30 days before lerapolturev and had higher pretreatment tumor CD8+T cell infiltrates) had significantly higher effector memory (CD8+, CCR7-, CD45RA-) but lower CD8+PD-1+ and CD4+PD-1+ cells compared with eight patients with median PFS 1.6 months. In addition, pretreatment blood from the four patients with median PFS 2.3 years had more potent antiviral responses to in vitro lerapolturev challenge compared with eight patients with median PFS 1.6 months. CONCLUSION: An inflamed pretreatment tumor microenvironment, possibly induced by prior anti-PD-1 therapy and a proficient peripheral blood pretreatment innate immune response (antiviral/interferon signaling) to lerapolturev was associated with long term PFS after intratumoral lerapolturev in a small cohort of patients. These findings imply a link between intratumoral T cell inflammation and peripheral immune function. TRIAL REGISTRATION NUMBER: NCT03712358.


Assuntos
Melanoma , Microambiente Tumoral , Humanos , Inflamação , Interferons , Melanoma/tratamento farmacológico , Prognóstico , Receptores CCR7
11.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955613

RESUMO

Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100-200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called "BiCyclA", was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.


Assuntos
Acidose , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
13.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961291

RESUMO

Bladder cancer has been ranked as one of the most commonly occurring cancers in men and women with approximately half of the diagnoses being the late stage and/or metastatic diseases. We have developed a novel cancer treatment by combining gold nanostar-mediated photothermal therapy with checkpoint inhibitor immunotherapy to treat bladder cancer. Experiment results with a murine animal model demonstrated that our developed photoimmunotherapy therapy is more efficacious than any individual studied treatment. In addition, we used intravital optical imaging with a dorsal skinfold window chamber animal model to study immune responses and immune cell accumulation in a distant tumor following our photoimmunotherapy. The mice used have the CX3CR1-GFP receptor on monocytes, natural killer cells, and dendritic cells allowing us to dynamically track their presence by fluorescence imaging. Our proof-of-principle study results showed that the photoimmunotherapy triggered anti-cancer immune responses to generate anti-cancer immune cells which accumulate in metastatic tumors. Our study results illustrate that intravital optical imaging is an efficient and versatile tool to investigate immune responses and mechanisms of photoimmunotherapy in future studies.


Assuntos
Ouro , Neoplasias da Bexiga Urinária , Animais , Rastreamento de Células , Imunoterapia/métodos , Camundongos , Imagem Óptica , Fototerapia/métodos
14.
Ann Surg Oncol ; 29(12): 7781-7788, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35831529

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasms (IPMN) are the only radiographically identifiable precursor to pancreatic adenocarcinoma, yet little is known about how these lesions progress to cancer. Inflammation has been associated with dysplastic progression; however, the cause and composition of this inflammation remains poorly characterized. We sought to comprehensively profile immune cell infiltration using parallel spatial transcriptomic and flow cytometric techniques. METHODS: Twelve patients with resected IPMN exhibiting both high-grade dysplasia (HGD) and low-grade dysplasia (LGD) were selected for spatial transcriptomics (NanoString GeoMx). Immune (CD45+), epithelial (PanCK+), and stromal (SMA+) compartments were analyzed separately using the GeoMx NGS Pipeline. An additional 11 patients resected for IPMN of varying degrees of dysplasia underwent immunophenotyping using flow cytometry (DURAClone IM). RESULTS: Spatial transcriptomics revealed that T cells represent the dominant immune cell within IPMN stroma, which was confirmed by flow cytometry (56%). Spatial profiling found that the T-cell infiltrate was significantly higher in regions of LGD compared with HGD (62% vs. 50%, p = 0.038). Macrophages were the only other immune cell type with > 10% abundance, yet conversely, were generally more abundant in regions of HGD compared to LGD (19% vs. 11%, p = 0.058). Correspondingly, immune cells within regions of HGD demonstrated transcriptional upregulation of genes associated with macrophage activity including secretion (CXCL1) and phagocytosis (C1QA, C1S, C4B). CONCLUSIONS: IPMN immune infiltrate is primarily composed of T cells and macrophages. Regions of HGD appear to be relatively deplete of T cells and show a trend toward macrophage enrichment compared with regions of LGD.


Assuntos
Adenocarcinoma Mucinoso , Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/cirurgia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Humanos , Hiperplasia/patologia , Imunofenotipagem , Inflamação/patologia , Macrófagos/patologia , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Linfócitos T
15.
Anesthesiology ; 137(1): 67-78, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412597

RESUMO

BACKGROUND: COVID-19 causes hypercoagulability, but the association between coagulopathy and hypoxemia in critically ill patients has not been thoroughly explored. This study hypothesized that severity of coagulopathy would be associated with acute respiratory distress syndrome severity, major thrombotic events, and mortality in patients requiring intensive care unit-level care. METHODS: Viscoelastic testing by rotational thromboelastometry and coagulation factor biomarker analyses were performed in this prospective observational cohort study of critically ill COVID-19 patients from April 2020 to October 2020. Statistical analyses were performed to identify significant coagulopathic biomarkers such as fibrinolysis-inhibiting plasminogen activator inhibitor 1 and their associations with clinical outcomes such as mortality, extracorporeal membrane oxygenation requirement, occurrence of major thrombotic events, and severity of hypoxemia (arterial partial pressure of oxygen/fraction of inspired oxygen categorized into mild, moderate, and severe per the Berlin criteria). RESULTS: In total, 53 of 55 (96%) of the cohort required mechanical ventilation and 9 of 55 (16%) required extracorporeal membrane oxygenation. Extracorporeal membrane oxygenation-naïve patients demonstrated lysis indices at 30 min indicative of fibrinolytic suppression on rotational thromboelastometry. Survivors demonstrated fewer procoagulate acute phase reactants, such as microparticle-bound tissue factor levels (odds ratio, 0.14 [0.02, 0.99]; P = 0.049). Those who did not experience significant bleeding events had smaller changes in ADAMTS13 levels compared to those who did (odds ratio, 0.05 [0, 0.7]; P = 0.026). Elevations in plasminogen activator inhibitor 1 (odds ratio, 1.95 [1.21, 3.14]; P = 0.006), d-dimer (odds ratio, 3.52 [0.99, 12.48]; P = 0.05), and factor VIII (no clot, 1.15 ± 0.28 vs. clot, 1.42 ± 0.31; P = 0.003) were also demonstrated in extracorporeal membrane oxygenation-naïve patients who experienced major thrombotic events. Plasminogen activator inhibitor 1 levels were significantly elevated during periods of severe compared to mild and moderate acute respiratory distress syndrome (severe, 44.2 ± 14.9 ng/ml vs. mild, 31.8 ± 14.7 ng/ml and moderate, 33.1 ± 15.9 ng/ml; P = 0.029 and 0.039, respectively). CONCLUSIONS: Increased inflammatory and procoagulant markers such as plasminogen activator inhibitor 1, microparticle-bound tissue factor, and von Willebrand factor levels are associated with severe hypoxemia and major thrombotic events, implicating fibrinolytic suppression in the microcirculatory system and subsequent micro- and macrovascular thrombosis in severe COVID-19.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Síndrome do Desconforto Respiratório , Trombofilia , Trombose , Transtornos da Coagulação Sanguínea/complicações , COVID-19/complicações , Estado Terminal , Fibrinólise , Humanos , Hipóxia/complicações , Microcirculação , Oxigênio , Inibidor 1 de Ativador de Plasminogênio , Estudos Prospectivos , Estudos Retrospectivos , Trombofilia/complicações , Tromboplastina
16.
Curr Protoc ; 2(4): e410, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435334

RESUMO

As shown in various preclinical studies, conventional type-1 dendritic cells, or cDC1s, play a critical role in the immunological rejection of tumors and in the defense against pathogens. This indispensability stems from their potent capacity to activate cytotoxic T cells, especially via the cross-presentation of exogenous antigens. For this reason, cDC1s have become an attractive target for immunotherapy. Here we report a simplified method for generating large numbers of cDC1-like cells in vitro from mobilized human peripheral blood CD34+ hematopoietic stem cells using FMS-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony-stimulating factor (GM-CSF). An important aspect of this Protocol is the growth of cells on a non-tissue culture-treated surface rather than on a tissue culture-treated surface since the latter suppresses cDC1-marker expression. The resulting CD11c+ DCs express high levels of cDC1-specific markers such as CD141, CLEC9A, TLR3, and several DC maturation markers. Compared to alternative differentiation methods, this method generates large numbers of cDC1-like cells without the need for immortalized feeder cells and should prove useful for studying cDC1 immunobiology and clinical applications of this DC subset. © 2022 Wiley Periodicals LLC. Basic Protocol: Generation of human CD141+CLEC9A+ dendritic cells from mobilized peripheral blood CD34+ hematopoietic stem cells Support Protocol: Flow cytometric immunophenotyping of CD141+ dendritic cells.


Assuntos
Apresentação Cruzada , Células Dendríticas , Antígenos CD34/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas , Humanos , Lectinas Tipo C/metabolismo , Receptores Mitogênicos/metabolismo
18.
Biomaterials ; 283: 121393, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35349874

RESUMO

Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , Moléculas com Motivos Associados a Patógenos , SARS-CoV-2 , Receptores Toll-Like
19.
Front Biosci (Landmark Ed) ; 27(2): 63, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35227006

RESUMO

Malignant melanoma recurrence remains heterogeneous in presentation, ranging from locoregional disease (i.e., local recurrence, satellites, in transit disease) to distant dermal and visceral metastases. This diverse spectrum of disease requires a personalized approach to management and has resulted in the development of both local (e.g., surgery, radiation, intralesional injection) and systemic (intravenous or oral) treatment strategies. Intralesional agents such as oncolytic viruses may also evoke local immune stimulation to induce and enhance the antitumor immune response. Further, it is hypothesized that these oncolytic viruses may convert immunologically "cold" tumors to more reactive "hot" tumor microenvironments and thereby overcome anti-PD-1 therapy resistance. Currently, talimogene laherparepvec (T-VEC), a modified herpes virus, is FDA-approved in this population, with many other oncolytic viruses under investigation in both preclinical and trial settings. Herein, we detail the scientific rationale, current landscape, and future directions of oncolytic viruses in melanoma.


Assuntos
Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Cutâneas , Humanos , Imunoterapia/métodos , Melanoma/patologia , Melanoma/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Cutâneas/terapia , Microambiente Tumoral
20.
Adv Sci (Weinh) ; 9(11): e2103672, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35133079

RESUMO

Protein therapeutics, except for antibodies, have a short plasma half-life and poor stability in circulation. Covalent coupling of polyethylene glycol (PEG) to protein drugs addresses this limitation. However, unlike previously thought, PEG is immunogenic. In addition to induced PEG antibodies, ≈70% of the US population has pre-existing anti-PEG antibodies. Both induced and preexisting anti-PEG antibodies result in accelerated drug clearance, reduced clinical efficacy, and severe hypersensitivity reactions that have limited the clinical utility of uricase, an enzyme drug for treatment for refractory gout that is decorated with a PEG corona. Here, the authors synthesize a poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) conjugate of uricase that decorates the protein with multiple polymer chains to create a corona to solve these problems. The resulting uricase-POEGMA is well-defined, has high bioactivity, and outperforms its PEG counterparts in its pharmacokinetics (PK). Furthermore, the conjugate does not induce anti-POEGMA antibodies and is not recognized by anti-PEG antibodies. These findings suggest that POEGMA conjugation may provide a solution to the immunogenicity and antigenicity limitations of PEG while improving upon its PK benefits. These results transcend uricase and can be applied to other PEGylated therapeutics and the broader class of biologics with suboptimal PK.


Assuntos
Gota , Urato Oxidase , Anticorpos/metabolismo , Antígenos/uso terapêutico , Gota/tratamento farmacológico , Humanos , Imunidade , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Polímeros/uso terapêutico , Urato Oxidase/farmacocinética , Urato Oxidase/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA