Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; 298(7): 102064, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623385

RESUMO

NOTCH1 is a transmembrane receptor that initiates a cell-cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats. Previous in vivo studies showed that each FNG affects naïve T cell development. To examine Fringe modifications of NOTCH1 at a physiological level, we used mass spectral glycoproteomic methods to analyze O-fucose glycans of endogenous NOTCH1 from activated T cells obtained from mice lacking all Fringe enzymes or expressing only a single FNG. While most O-fucose sites were modified at high stoichiometry, only EGF6, EGF16, EGF26, and EGF27 were extended in WT T cells. Additionally, cell-based assays of NOTCH1 lacking fucose at each of those O-fucose sites revealed small but significant effects of LFNG on Notch-Delta binding in the EGF16 and EGF27 mutants. Finally, in activated T cells expressing only LFNG, MFNG, or RFNG alone, the extension of O-fucose with GlcNAc in the same EGF repeats was diminished, consistent with cooperative interactions when all three Fringes were present. The combined data open the door for the analysis of O-glycans on endogenous NOTCH1 derived from different cell types.


Assuntos
Fator de Crescimento Epidérmico , Fucose , Receptor Notch1/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Fucose/metabolismo , Glucosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Polissacarídeos/metabolismo , Receptores Notch/metabolismo , Linfócitos T/metabolismo
2.
Matrix Biol ; 107: 77-96, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167946

RESUMO

Many extracellular matrix (ECM) associated proteins that influence ECM properties have Thrombospondin type 1 repeats (TSRs) which are modified with O-linked fucose. The O-fucose is added in the endoplasmic reticulum to folded TSRs by the enzyme Protein O-fucosyltransferase-2 (POFUT2) and is proposed to promote efficient trafficking of substrates. The importance of this modification for function of TSR-proteins is underscored by the early embryonic lethality of mouse embryos lacking Pofut2. To overcome early lethality and investigate the impact of the Pofut2 knockout on the secretion of POFUT2 substrates and on extracellular matrix properties in vivo, we deleted Pofut2 in the developing limb mesenchyme using Prrx1-Cre recombinase. Loss of Pofut2 in the limb mesenchyme caused significant shortening of the limbs, long bones and tendons and stiff joint resembling the musculoskeletal dysplasias in human and in mice with mutations in ADAMTS or ADAMTSL proteins. Limb shortening was evident at embryonic day 14.5 where loss of O-fucosylation led to an accumulation of fibrillin 2 (FBN2), decreased BMP and IHH signaling, and increased TGF-ß signaling. Consistent with these changes we saw a decrease in the size of the hypertrophic zone with lower levels of Collagen-X. Unexpectedly, we observed minimal effects of the Pofut2 knockout on secretion of two POFUT2 substrates, CCN2 or ADAMTS17, in the developing bone. In contrast, CCN2 and two other POFUT2 substrates important for bone development, ADAMTS6 and 10, showed a decrease in secretion from POFUT2-null HEK293T cells in vitro. These combined results suggest that the impact of the Pofut2 mutation is cell-type specific. In addition, these observations raise the possibility that the O-fucose modification on TSRs extends beyond promoting efficient trafficking of POFUT2 substrates and has the potential to influence their function in the extracellular environment.


Assuntos
Fucosiltransferases , Trombospondinas , Animais , Desenvolvimento Ósseo , Matriz Extracelular/metabolismo , Fucosiltransferases/química , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Células HEK293 , Proteínas de Homeodomínio , Humanos , Camundongos
3.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641486

RESUMO

Fringes are glycosyltransferases that transfer a GlcNAc to O-fucose residues on Epidermal Growth Factor-like (EGF) repeats. Three Fringes exist in mammals: LUNATIC FRINGE (LFNG), MANIC FRINGE (MFNG), and RADICAL FRINGE (RFNG). Fringe modification of O-fucose on EGF repeats in the NOTCH1 (N1) extracellular domain modulates the activation of N1 signaling. Not all O-fucose residues of N1 are modified by all Fringes; some are modified by one or two Fringes and others not modified at all. The distinct effects on N1 activity depend on which Fringe is expressed in a cell. However, little data is available on the effect that more than one Fringe has on the modification of O-fucose residues and the resulting downstream consequence on Notch activation. Using mass spectral glycoproteomic site mapping and cell-based N1 signaling assays, we compared the effect of co-expression of N1 with one or more Fringes on modification of O-fucose and activation of N1 in three cell lines. Individual expression of each Fringe with N1 in the three cell lines revealed differences in modulation of the Notch pathway dependent on the presence of endogenous Fringes. Despite these cell-based differences, co-expression of several Fringes with N1 demonstrated a dominant effect of LFNG over MFNG or RFNG. MFNG and RFNG appeared to be co-dominant but strongly dependent on the ligands used to activate N1 and on the endogenous expression of Fringes. These results show a hierarchy of Fringe activity and indicate that the effect of MFNG and/or RFNG could be small in the presence of LFNG.


Assuntos
Fucose/metabolismo , Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Receptor Notch1/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Células CHO , Células Cultivadas , Cricetulus , Glucosiltransferases/genética , Glicosiltransferases/genética , Humanos , Camundongos , Células NIH 3T3 , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Receptor Notch1/genética , Transdução de Sinais
4.
Cell Chem Biol ; 28(4): 567-582.e4, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33378651

RESUMO

The pleiotropic functions of macrophages in immune defense, tissue repair, and maintenance of tissue homeostasis are supported by the heterogeneity in macrophage sub-populations that differ both in ontogeny and polarization. Although glycans and glycan-binding proteins (GBPs) are integral to macrophage function and may contribute to macrophage diversity, little is known about the factors governing their expression. Here, we provide a resource for characterizing the N-/O-glycomes of various murine peritoneal macrophage sub-populations, demonstrating that glycosylation primarily reflects developmental origin and, to a lesser degree, cellular polarization. Furthermore, comparative analysis of GBP-coding genes in resident and elicited macrophages indicated that GBP expression is consistent with specialized macrophage functions and correlates with specific types of displayed glycans. An integrated, semi-quantitative approach was used to confirm distinct expression patterns of glycans and their binding proteins across different macrophages. The data suggest that regulation of glycan-protein complexes may be central to macrophage residence and recruitment.


Assuntos
Proteínas de Transporte/genética , Glicômica , Macrófagos/metabolismo , Polissacarídeos/genética , Animais , Proteínas de Transporte/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo
5.
Front Chem ; 8: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117864

RESUMO

Sialylation, a post-translational modification that impacts the structure, activity, and longevity of glycoproteins has been thought to be controlled primarily by the expression of sialyltransferases (STs). In this report we explore the complementary impact of metabolic flux on sialylation using a glycoengineering approach. Specifically, we treated three human breast cell lines (MCF10A, T-47D, and MDA-MB-231) with 1,3,4-O-Bu3ManNAc, a "high flux" metabolic precursor for the sialic acid biosynthetic pathway. We then analyzed N-glycan sialylation using solid phase extraction of glycopeptides (SPEG) mass spectrometry-based proteomics under conditions that selectively captured sialic acid-containing glycopeptides, referred to as "sialoglycosites." Gene ontology (GO) analysis showed that flux-based changes to sialylation were broadly distributed across classes of proteins in 1,3,4-O-Bu3ManNAc-treated cells. Only three categories of proteins, however, were "highly responsive" to flux (defined as two or more sialylation changes of 10-fold or greater). Two of these categories were cell signaling and cell adhesion, which reflect well-known roles of sialic acid in oncogenesis. A third category-protein folding chaperones-was unexpected because little precedent exists for the role of glycosylation in the activity of these proteins. The highly flux-responsive proteins were all linked to cancer but sometimes as tumor suppressors, other times as proto-oncogenes, or sometimes both depending on sialylation status. A notable aspect of our analysis of metabolically glycoengineered breast cells was decreased sialylation of a subset of glycosites, which was unexpected because of the increased intracellular levels of sialometabolite "building blocks" in the 1,3,4-O-Bu3ManNAc-treated cells. Sites of decreased sialylation were minor in the MCF10A (<25% of all glycosites) and T-47D (<15%) cells but dominated in the MDA-MB-231 line (~60%) suggesting that excess sialic acid could be detrimental in advanced cancer and cancer cells can evolve mechanisms to guard against hypersialylation. In summary, flux-driven changes to sialylation offer an intriguing and novel mechanism to switch between context-dependent pro- or anti-cancer activities of the several oncoproteins identified in this study. These findings illustrate how metabolic glycoengineering can uncover novel roles of sialic acid in oncogenesis.

6.
Glycobiology ; 30(10): 817-829, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32149355

RESUMO

Mutations in multiple genes required for proper O-mannosylation of α-dystroglycan are causal for congenital/limb-girdle muscular dystrophies and abnormal brain development in mammals. Previously, we and others further elucidated the functional O-mannose glycan structure that is terminated by matriglycan, [(-GlcA-ß3-Xyl-α3-)n]. This repeating disaccharide serves as a receptor for proteins in the extracellular matrix. Here, we demonstrate in vitro that HNK-1 sulfotransferase (HNK-1ST/carbohydrate sulfotransferase) sulfates terminal glucuronyl residues of matriglycan at the 3-hydroxyl and prevents further matriglycan polymerization by the LARGE1 glycosyltransferase. While α-dystroglycan isolated from mouse heart and kidney is susceptible to exoglycosidase digestion of matriglycan, the functional, lower molecular weight α-dystroglycan detected in brain, where HNK-1ST expression is elevated, is resistant. Removal of the sulfate cap by a sulfatase facilitated dual-glycosidase digestion. Our data strongly support a tissue specific mechanism in which HNK-1ST regulates polymer length by competing with LARGE for the 3-position on the nonreducing GlcA of matriglycan.


Assuntos
Distroglicanas/metabolismo , Ácido Glucurônico/metabolismo , Sulfotransferases/metabolismo , Animais , Distroglicanas/química , Ácido Glucurônico/química , Glicosilação , Camundongos , Sulfotransferases/química , Sulfotransferases/isolamento & purificação
7.
Nat Methods ; 15(11): 889-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377379

RESUMO

Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.


Assuntos
Anticorpos/imunologia , Endotélio Vascular/metabolismo , Epitopos/imunologia , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Pulmão/metabolismo , Mutação , Animais , Especificidade de Anticorpos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Pulmão/citologia , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Transdução de Sinais , Relação Estrutura-Atividade , Enxofre/química
8.
PLoS One ; 13(5): e0195812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847599

RESUMO

In this report we use 'high-flux' tributanoyl-modified N-acetylmannosamine (ManNAc) analogs with natural N-acetyl as well as non-natural azido- and alkyne N-acyl groups (specifically, 1,3,4-O-Bu3ManNAc, 1,3,4-O-Bu3ManNAz, and 1,3,4-O-Bu3ManNAl respectively) to probe intracellular sialic acid metabolism in the near-normal MCF10A human breast cell line in comparison with earlier stage T-47D and more advanced stage MDA-MB-231 breast cancer lines. An integrated view of sialic acid metabolism was gained by measuring intracellular sialic acid production in tandem with transcriptional profiling of genes linked to sialic acid metabolism. The transcriptional profiling showed several differences between the three lines in the absence of ManNAc analog supplementation that helps explain the different sialoglycan profiles naturally associated with cancer. Only minor changes in mRNA transcript levels occurred upon exposure to the compounds confirming that metabolic flux alone can be a key determinant of sialoglycoconjugate display in breast cancer cells; this result complements the well-established role of genetic control (e.g., the transcription of STs) of sialylation abnormalities ubiquitously associated with cancer. A notable result was that the different cell lines produced significantly different levels of sialic acid upon exogenous ManNAc supplementation, indicating that feedback inhibition of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE)-generally regarded as the 'gatekeeper' enzyme for titering flux into sialic acid biosynthesis-is not the only regulatory mechanism that limits production of this sugar. A notable aspect of our metabolic glycoengineering approach is its ability to discriminate cell subtype based on intracellular metabolism by illuminating otherwise hidden cell type-specific features. We believe that this strategy combined with multi-dimensional analysis of sialic acid metabolism will ultimately provide novel insights into breast cancer subtypes and provide a foundation for new methods of diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/classificação , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Hexosaminas/química , Ácido N-Acetilneuramínico/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Glicosilação , Humanos , Células Tumorais Cultivadas
9.
Glycobiology ; 28(4): 214-222, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390058

RESUMO

Mucin-type O-glycans decorate >80% of secretory and cell surface proteins and contribute to health and disease. However, dynamic alterations in the O-glycome are poorly understood because current O-glycomic methodologies are not sufficiently sensitive nor quantitative. Here we describe a novel isotope labeling approach termed Isotope-Cellular O-glycome Reporter Amplification (ICORA) to amplify and analyze the O-glycome from cells. In this approach, cells are incubated with Ac3GalNAc-Bn (Ac3GalNAc-[1H7]Bn) or a heavy labeled Ac3GalNAc-BnD7 (Ac3GalNAc-[2D7]Bn) O-glycan precursor (7 Da mass difference), which enters cells and upon de-esterification is modified by Golgi enzymes to generate Bn-O-glycans secreted into the culture media. After recovery, heavy and light Bn-O-glycans from two separate conditions are mixed, analyzed by MS, and statistically interrogated for changes in O-glycan abundance using a semi-automated approach. ICORA enables ~100-1000-fold enhanced sensitivity and increased throughput compared to traditional O-glycomics. We validated ICORA with model cell lines and used it to define alterations in the O-glycome in colorectal cancer. ICORA is a useful tool to explore the dynamic regulation of the O-glycome in health and disease.


Assuntos
Glicômica , Polissacarídeos/análise , Células Cultivadas , Humanos , Marcação por Isótopo , Polissacarídeos/metabolismo
10.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251719

RESUMO

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Assuntos
Perfilação da Expressão Gênica , Sialiltransferases/química , Animais , Baculoviridae/metabolismo , Cristalografia por Raios X , Monofosfato de Citidina/química , Vetores Genéticos , Glicosídeo Hidrolases/química , Glicosilação , Células HEK293 , Humanos , Insetos , Cinética , Proteínas Recombinantes/química , Sulfotransferases/química
11.
Anal Chim Acta ; 993: 22-37, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29078952

RESUMO

Motivated by the lack of easily implementable and generally applicable strategies to increase and assess data accuracy, we devised a novel label-free approach, termed REQUIEM, to address challenges in relative quantitation. For comparing the relative amounts of analytes in two samples, a mixture is prepared from aliquots of the samples, and the samples and the mixture are analyzed in parallel according to the intended workflow. Processing of the resulting data using the REQUIEM algorithm yields unbiased analyte fold-changes and associated statistics, allowing several types of errors to be diagnosed or eliminated. Extensive simulations and analysis of carefully prepared standard samples demonstrated the rigorous foundations of REQUIEM. We applied REQUIEM to several real-world analytical techniques and workflows, notably to tandem mass spectrometry analysis by using isomeric oligosaccharides as test analytes. We conclude that REQUIEM can reveal inaccuracies in the data that are difficult to identify by using traditional approaches.

12.
J Biol Chem ; 292(10): 4123-4137, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28096468

RESUMO

To study the regulation of colorectal adenocarcinoma progression by O-GlcNAc, we have focused on the O-GlcNAc-mediated epigenetic regulation of human colon cancer stem cells (CCSC). Xenograft tumors from colon tumor cells with O-linked N-acetylglucosamine transferase (OGT) knockdown grew significantly slower than those formed from control cells, indicating a reduced proliferation of tumor cells due to inhibition of OGT expression. Significant reduction of the CCSC population was observed in the tumor cells after OGT knockdown, whereas tumor cells treated with the O-GlcNAcase inhibitor showed an increased CCSC population, indicating that O-GlcNAc levels regulated the CCSC compartment. When grown in suspension, tumor cells with OGT knockdown showed a reduced ability to form tumorspheres, indicating a reduced self-renewal of CCSC due to reduced levels of O-GlcNAc. ChIP-sequencing experiments using an anti-O-GlcNAc antibody revealed significant chromatin enrichment of O-GlcNAc-modified proteins at the promoter of the transcription factor MYBL1, which was also characterized by the presence of H3K27me3. RNA-sequencing analysis showed an increased expression of MYBL1 in tumor cells with OGT knockdown. Forced overexpression of MYBL1 led to a reduced population of CCSC and tumor growth in vivo, similar to the effects of OGT silencing. Moreover, two CpG islands near the transcription start site of MYBL1 were identified, and O-GlcNAc levels regulated their methylation status. These results strongly argue that O-GlcNAc epigenetically regulates MYBL1, functioning similarly to H3K27me3. The aberrant CCSC compartment observed after modulating O-GlcNAc levels is therefore likely to result, at least in part, from the epigenetic regulation of MYBL1 expression by O-GlcNAc, thereby significantly affecting tumor progression.


Assuntos
Acetilglucosamina/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/patologia , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Apoptose , Western Blotting , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biol Chem ; 291(36): 18600-18607, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387504

RESUMO

Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.


Assuntos
Amidoidrolases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Heparitina Sulfato/biossíntese , Modelos Biológicos , Sulfotransferases/biossíntese , Transcrição Gênica/fisiologia , Amidoidrolases/genética , Animais , Células HEK293 , Heparitina Sulfato/genética , Humanos , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/genética , Sulfotransferases/genética
14.
Glycobiology ; 26(10): 1120-1132, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27236198

RESUMO

The neuromuscular junction (NMJ) is enriched with glycoproteins modified with N-acetylgalactosamine (GalNAc) residues, and four nominally GalNAc-specific plant lectins have historically been used to identify the NMJ and the utrophin-glycoprotein complex. However, little is known about the specific glycan epitopes on skeletal muscle that are bound by these lectins, the glycoproteins that bear these epitopes or how creation of these glycan epitopes is regulated. Here, we profile changes in cell surface glycosylation during muscle cell differentiation and identify distinct differences in the binding preferences of GalNAc-specific lectins, Wisteria floribunda agglutinin (WFA), Vicia villosa agglutinin (VVA), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). While we find that all four GalNAc binding lectins specifically label the NMJ, each of the four lectins binds distinct sets of muscle glycoproteins; furthermore, none of the major adhesion complexes are required for binding of any of the four GalNAc-specific lectins. Analysis of glycosylation-related transcripts identified target glycosyltransferases and glycosidases that could potentially create GalNAc-containing epitopes; reducing expression of these transcripts by siRNA highlighted differences in lectin binding specificities. In addition, we found that complex N-glycans are required for binding of WFA and SBA to murine C2C12 myotubes and for WFA binding to wild-type skeletal muscle, but not for binding of VVA or DBA. These results demonstrate that muscle cell surface glycosylation is finely regulated during muscle differentiation in a domain- and acceptor-substrate-specific manner, suggesting that temporal- and site-specific glycosylation are important for skeletal muscle cell function.


Assuntos
Epitopos/imunologia , Glicocálix/metabolismo , Músculo Esquelético/metabolismo , Polissacarídeos/imunologia , Animais , Diferenciação Celular , Linhagem Celular , Galinhas , Glicocálix/química , Glicocálix/imunologia , Camundongos , Camundongos Knockout , Músculo Esquelético/química , Músculo Esquelético/citologia , Músculo Esquelético/imunologia
15.
Stem Cells ; 34(7): 1742-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27074314

RESUMO

Polysialic acid (PSA) is a carbohydrate polymer of repeating α-2,8 sialic acid residues that decorates multiple targets, including neural cell adhesion molecule (NCAM). PST and STX encode the two enzymes responsible for PSA modification of target proteins in mammalian cells, but despite widespread polysialylation in embryonic development, the majority of studies have focused strictly on the role of PSA in neurogenesis. Using human pluripotent stem cells (hPSCs), we have revisited the developmental role of PST and STX and show that early progenitors of the three embryonic germ layers are polysialylated on their cell surface. Changes in polysialylation can be attributed to lineage-specific expression of polysialyltransferase genes; PST is elevated in endoderm and mesoderm, while STX is elevated in ectoderm. In hPSCs, PST and STX genes are epigenetically marked by overlapping domains of H3K27 and H3K4 trimethylation, indicating that they are held in a "developmentally-primed" state. Activation of PST transcription during early mesendoderm differentiation is under control of the T-Goosecoid transcription factor network, a key regulatory axis required for early cell fate decisions in the vertebrate embryo. This establishes polysialyltransferase genes as part of a developmental program associated with germ layer establishment. Finally, we show by shRNA knockdown and CRISPR-Cas9 genome editing that PST-dependent cell surface polysialylation is essential for endoderm specification. This is the first report to demonstrate a role for a glycosyltransferase in hPSC lineage specification. Stem Cells 2016;34:1742-1752.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Membrana Celular/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Humanos , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Biochim Biophys Acta ; 1852(9): 1928-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26144047

RESUMO

Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.

17.
Biochim Biophys Acta ; 1840(6): 1993-2003, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412195

RESUMO

BACKGROUND: Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. METHODS: Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. RESULTS: Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. CONCLUSIONS: Differentiation of embryonic stem cells markedly changes the proteoglycanome. GENERAL SIGNIFICANCE: The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Endoderma/citologia , Glicosaminoglicanos/química , Mesoderma/citologia , Glicosaminoglicanos/biossíntese , Hepatócitos/citologia , Humanos , Proteoglicanas/química
18.
Glycobiology ; 23(8): 1004-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708401

RESUMO

There is an increasing interest in the modification of cell surface glycosylation to improve the properties of therapeutic cells. For example, glycosylation affects the biodistribution of mesenchymal stromal cells (MSCs). Metabolic glycoengineering is an efficient way to modify the cell surface. The mammalian biosynthetic machinery tolerates the unnatural sialic acid precursor, N-propanoylmannosamine (ManNProp), and incorporates it into cell surface glycoconjugates. We show here by mass spectrometric analysis of cell surface N-glycans that about half of N-acetylneuraminic acid was replaced by N-propanoylneuraminic acid in the N-glycans of human umbilical cord blood-derived MSCs supplemented with ManNProp. In addition, the N-glycan profile was altered. ManNProp-supplemented cells had more multiply fucosylated N-glycan species than control cells. The fucosylated epitopes were shown in tandem mass spectrometric analysis to be Lewis x or blood group H epitopes, but not sialyl Lewis x (sLex). The amounts of tri- and tetra-antennary and polylactosamine-containing N-glycans also increased in ManNProp supplementation. In accordance with previous studies of other cell types, increased expression of the sLex epitope in ManNProp-supplemented MSCs was demonstrated by flow cytometry. In light of the N-glycan analysis, the sLex epitope in these cells is likely to be carried by O-glycans or glycolipids. sLex has been shown to target MSCs to bone marrow, which may be desirable in therapeutic applications. The present results represent the first structural analysis of an N-glycome of ManNProp-supplemented cells and demonstrate the feasibility of modifying cell surface glycosylation of therapeutic cells by this type of metabolic glycoengineering.


Assuntos
Glicômica , Hexosaminas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glicosilação , Humanos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
19.
Glycoconj J ; 30(5): 497-510, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23053635

RESUMO

Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Heparan Sulfato/química , Células-Tronco Pluripotentes/efeitos dos fármacos , Tretinoína/farmacologia , Sequência de Carboidratos , Diferenciação Celular , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Dados de Sequência Molecular , Células-Tronco Pluripotentes/química , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
20.
J Biol Chem ; 287(45): 37835-56, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988249

RESUMO

The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Polissacarídeos/metabolismo , Transcriptoma/genética , Animais , Vias Biossintéticas/genética , Diferenciação Celular/genética , Células Cultivadas , Análise por Conglomerados , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Corpos Embrioides/metabolismo , Endoderma/metabolismo , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica/métodos , Glicômica/métodos , Glicosilação , Complexo de Golgi/metabolismo , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Polissacarídeos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA