Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Genet ; 15: 1394656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854430

RESUMO

Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV), which can cause substantial mortality and economic losses in rainbow trout aquaculture and fisheries enhancement hatchery programs. In a previous study on a commercial rainbow trout breeding line that has undergone selection, we found that genetic resistance to IHNV is controlled by the oligogenic inheritance of several moderate and many small effect quantitative trait loci (QTL). Here we used genome wide association analyses in two different commercial aquaculture lines that were naïve to previous exposure to IHNV to determine whether QTL were shared across lines, and to investigate whether there were major effect loci that were still segregating in the naïve lines. A total of 1,859 and 1,768 offspring from two commercial aquaculture strains were phenotyped for resistance to IHNV and genotyped with the rainbow trout Axiom 57K SNP array. Moderate heritability values (0.15-0.25) were estimated. Two statistical methods were used for genome wide association analyses in the two populations. No major QTL were detected despite the naïve status of the two lines. Further, our analyses confirmed an oligogenic architecture for genetic resistance to IHNV in rainbow trout. Overall, 17 QTL with notable effect (≥1.9% of the additive genetic variance) were detected in at least one of the two rainbow trout lines with at least one of the two statistical methods. Five of those QTL were mapped to overlapping or adjacent chromosomal regions in both lines, suggesting that some loci may be shared across commercial lines. Although some of the loci detected in this GWAS merit further investigation to better understand the biological basis of IHNV disease resistance across populations, the overall genetic architecture of IHNV resistance in the two rainbow trout lines suggests that genomic selection may be a more effective strategy for genetic improvement in this trait.

2.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180085

RESUMO

Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.


Assuntos
Salmonidae , Animais , Especialização , Rim , Replicação Viral
3.
Fish Shellfish Immunol ; 136: 108711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004895

RESUMO

The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-ß), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Salmo salar/genética , Estudo de Associação Genômica Ampla , Piscirickettsia/fisiologia , Transcriptoma , Interações Hospedeiro-Patógeno , Citoesqueleto
4.
Evol Appl ; 16(3): 657-672, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969143

RESUMO

Quantitative models that simulate the inheritance and evolution of fitness-linked traits offer a method for predicting how environmental or anthropogenic perturbations can affect the dynamics of wild populations. Random mating between individuals within populations is a key assumption of many such models used in conservation and management to predict the impacts of proposed management or conservation actions. However, recent evidence suggests that non-random mating may be underestimated in wild populations and play an important role in diversity-stability relationships. Here we introduce a novel individual-based quantitative genetic model that incorporates assortative mating for reproductive timing, a defining attribute of many aggregate breeding species. We demonstrate the utility of this framework by simulating a generalized salmonid lifecycle, varying input parameters, and comparing model outputs to theoretical expectations for several eco-evolutionary, population dynamic scenarios. Simulations with assortative mating systems resulted in more resilient and productive populations than those that were randomly mating. In accordance with established ecological and evolutionary theory, we also found that decreasing the magnitude of trait correlations, environmental variability, and strength of selection each had a positive effect on population growth. Our model is constructed in a modular framework so that future components can be easily added to address pressing issues such as the effects of supportive breeding, variable age structure, differential selection by sex or age, and fishery interactions on population growth and resilience. With code published in a public Github repository, model outputs may easily be tailored to specific study systems by parameterizing with empirically generated values from long-term ecological monitoring programs.

5.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36759939

RESUMO

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat.


Assuntos
Oncorhynchus kisutch , Animais , Oncorhynchus kisutch/genética , Densidade Demográfica , Genoma
6.
Mol Ecol ; 32(3): 542-559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000273

RESUMO

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Assuntos
Oncorhynchus kisutch , Humanos , Animais , Oncorhynchus kisutch/genética , Genética Populacional , Adaptação Fisiológica/genética , Deriva Genética , Genoma , Polimorfismo de Nucleotídeo Único/genética
7.
Virus Evol ; 8(2): veac079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36101884

RESUMO

Theory of the evolution of pathogen specialization suggests that a specialist pathogen gains high fitness in one host, but this comes with fitness loss in other hosts. By contrast, a generalist pathogen does not achieve high fitness in any host, but gains ecological fitness by exploiting different hosts, and has higher fitness than specialists in nonspecialized hosts. As a result, specialist pathogens are predicted to have greater variation in fitness across hosts, and generalists would have lower fitness variation across hosts. We test these hypotheses by measuring pathogen replicative fitness as within-host viral loads from the onset of infection to the beginning of virus clearance, using the rhabdovirus infectious hematopoietic necrosis virus (IHNV) in salmonid fish. Based on field prevalence and virulence studies, the IHNV subgroups UP, MD, and L are specialists, causing infection and mortality in sockeye salmon, steelhead, and Chinook salmon juveniles, respectively. The UC subgroup evolved naturally from a UP ancestor and is a generalist infecting all three host species but without causing severe disease. We show that the specialist subgroups had the highest peak and mean viral loads in the hosts in which they are specialized, and they had low viral loads in nonspecialized hosts, resulting in large variation in viral load across hosts. Viral kinetics show that the mechanisms of specialization involve the ability to both maximize early virus replication and avoid clearance at later times, with different mechanisms of specialization evident in different host-virus combinations. Additional nuances in the data included different fitness levels for nonspecialist interactions, reflecting different trade-offs for specialist viruses in other hosts. The generalist UC subgroup reached intermediate viral loads in all hosts and showed the smallest variation in fitness across hosts. The evolution of the UC generalist from an ancestral UP sockeye specialist was associated with fitness increases in steelhead and Chinook salmon, but only slight decreases in fitness in sockeye salmon, consistent with low- or no-cost generalism. Our results support major elements of the specialist-generalist theory, providing evidence of a specialist-generalist continuum in a vertebrate pathogen. These results also quantify within-host replicative fitness trade-offs resulting from the natural evolution of specialist and generalist virus lineages in multi-host ecosystems.

8.
J Hered ; 113(2): 121-144, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575083

RESUMO

The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.


Assuntos
Oncorhynchus mykiss , Salmão , Alelos , Animais , Evolução Biológica , Espécies em Perigo de Extinção , Oncorhynchus mykiss/genética , Salmão/genética
9.
Animals (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268215

RESUMO

Understanding the genetic status of aquaculture strains is essential for developing management guidelines aimed at sustaining the rates of genetic gain for economically important traits, as well as securing populations that will be robust to climate change. Coho salmon was the first salmonid introduced to Chile for commercial purposes and now comprises an essential component of the country's aquaculture industry. Several events, such as admixture, genetic bottlenecks, and rapid domestication, appear to be determinants in shaping the genome of commercial strains representing this species. To determine the impact of such events on the genetic diversity of these strains, we sought to estimate the effective population size (Ne) of several of these strains using genome-wide approaches. We compared these estimates to commercial strains from North America and Japan, as well as a hatchery strain used for supportive breeding of wild populations. The estimates of Ne were based on a method robust to assumptions about changes in population history, and ranged from low (Ne = 34) to relatively high (Ne = 80) in the Chilean strains. These estimates were higher than those obtained from the commercial North American strain but lower than those observed in the hatchery population and the Japanese strain (with Ne over 150). Our results suggest that some populations require measures to control the rates of inbreeding, possibly by using genomic information and incorporating new genetic material to ensure the long-term sustainability of these populations.

10.
Pathogens ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358005

RESUMO

Environmental variation has important effects on host-pathogen interactions, affecting large-scale ecological processes such as the severity and frequency of epidemics. However, less is known about how the environment interacts with host immunity to modulate virus fitness within hosts. Here, we studied the interaction between host immune responses and water temperature on the long-term persistence of a model vertebrate virus, infectious hematopoietic necrosis virus (IHNV) in steelhead trout (Oncorhynchus mykiss). We first used cell culture methods to factor out strong host immune responses, allowing us to test the effect of temperature on viral replication. We found that 15 ∘C water temperature accelerated IHNV replication compared to the colder 10 and 8 ∘C temperatures. We then conducted in vivo experiments to quantify the effect of 6, 10, and 15 ∘C water temperatures on IHNV persistence over 8 months. Fish held at 15 and 10 ∘C were found to have higher prevalence of neutralizing antibodies compared to fish held at 6 ∘C. We found that IHNV persisted for a shorter time at warmer temperatures and resulted in an overall lower fish mortality compared to colder temperatures. These results support the hypothesis that temperature and host immune responses interact to modulate virus persistence within hosts. When immune responses were minimized (i.e., in vitro) virus replication was higher at warmer temperatures. However, with a full potential for host immune responses (i.e., in vivo experiments) longer virus persistence and higher long-term virulence was favored in colder temperatures. We also found that the viral RNA that persisted at later time points (179 and 270 days post-exposure) was mostly localized in the kidney and spleen tissues. These tissues are composed of hematopoietic cells that are favored targets of the virus. By partitioning the effect of temperature on host and pathogen responses, our results help to better understand environmental drivers of host-pathogen interactions within hosts, providing insights into potential host-pathogen responses to climate change.

11.
Viruses ; 13(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919549

RESUMO

Infectious Hematopoietic Necrosis Virus (IHNV) infects juvenile salmonid fish in conservation hatcheries and aquaculture facilities, and in some cases, causes lethal disease. This study assesses intra-specific variation in the IHNV susceptibility of Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin (CRB), in the northwestern United States. The virulence and infectivity of IHNV strains from three divergent virus genogroups are measured in four Chinook salmon populations, including spring-run and fall-run fish from the lower or upper regions of the CRB. Following controlled laboratory exposures, our results show that the positive control L strain had significantly higher virulence, and the UC and MD strains that predominate in the CRB had equivalently low virulence, consistent with field observations. By several experimental measures, there was little variation in host susceptibility to infection or disease. However, a small number of exceptions suggested that the lower CRB spring-run Chinook salmon population may be less susceptible than other populations tested. The UC and MD viruses did not differ in infectivity, indicating that the observed asymmetric field prevalence in which IHNV detected in CRB Chinook salmon is 83% UC and 17% MD is not due to the UC virus being more infectious. Overall, we report little intra-species variation in CRB Chinook salmon susceptibility to UC or MD IHNV infection or disease, and suggest that other factors may instead influence the ecology of IHNV in the CRB.


Assuntos
Suscetibilidade a Doenças/veterinária , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Rios/virologia , Salmão/virologia , Animais , Aquicultura , Suscetibilidade a Doenças/virologia , Doenças dos Peixes/epidemiologia , Genótipo , Vírus da Necrose Hematopoética Infecciosa/classificação , Vírus da Necrose Hematopoética Infecciosa/genética , Noroeste dos Estados Unidos/epidemiologia , Filogenia , Prevalência , Virulência
12.
Mol Ecol ; 30(6): 1435-1456, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33527498

RESUMO

Understanding the genetic basis of repeated evolution of the same phenotype across taxa is a fundamental aim in evolutionary biology and has applications in conservation and management. However, the extent to which interspecific life-history trait polymorphisms share evolutionary pathways remains underexplored. Here, we address this gap by studying the genetic basis of a key life-history trait, age at maturity, in four species of Pacific salmonids (genus Oncorhynchus) that exhibit intra- and interspecific variation in this trait-Chinook Salmon, Coho Salmon, Sockeye Salmon, and Steelhead Trout. We tested for associations in all four species between age at maturity and two genome regions, six6 and vgll3, that are strongly associated with the same trait in Atlantic Salmon (Salmo salar). We also conducted a genome-wide association analysis in Steelhead to assess whether additional regions were associated with this trait. We found the genetic basis of age at maturity to be heterogeneous across salmonid species. Significant associations between six6 and age at maturity were observed in two of the four species, Sockeye and Steelhead, with the association in Steelhead being particularly strong in both sexes (p = 4.46 × 10-9 after adjusting for genomic inflation). However, no significant associations were detected between age at maturity and the vgll3 genome region in any of the species, despite its strong association with the same trait in Atlantic Salmon. We discuss possible explanations for the heterogeneous nature of the genetic architecture of this key life-history trait, as well as the implications of our findings for conservation and management.


Assuntos
Características de História de Vida , Salmo salar , Animais , Feminino , Genoma , Estudo de Associação Genômica Ampla , Genômica , Masculino , Fenótipo , Salmo salar/genética
14.
Evol Appl ; 13(8): 1841-1853, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908589

RESUMO

Many pathogens interact and evolve in communities where more than one host species is present, yet our understanding of host-pathogen specialization is mostly informed by laboratory studies with single species. Managing diseases in the wild, however, requires understanding how host-pathogen specialization affects hosts in diverse communities. Juvenile salmonid mortality in hatcheries caused by infectious hematopoietic necrosis virus (IHNV) has important implications for salmonid conservation programs. Here, we evaluate evidence for IHNV specialization on three salmonid hosts and assess how this influences intra- and interspecific transmission in hatchery-reared salmonids. We expect that while more generalist viral lineages should pose an equal risk of infection across host types, viral specialization will increase intraspecific transmission. We used Bayesian models and data from 24 hatcheries in the Columbia River Basin to reconstruct the exposure history of hatcheries with two IHNV lineages, MD and UC, allowing us to estimate the probability of juvenile infection with these lineages in three salmonid host types. Our results show that lineage MD is specialized on steelhead trout and perhaps rainbow trout (both Oncorhynchus mykiss), whereas lineage UC displayed a generalist phenotype across steelhead trout, rainbow trout, and Chinook salmon. Furthermore, our results suggest the presence of specialist-generalist trade-offs because, while lineage UC had moderate probabilities of infection across host types, lineage MD had a small probability of infection in its nonadapted host type, Chinook salmon. Thus, in addition to quantifying probabilities of infection of socially and economically important salmonid hosts with different IHNV lineages, our results provide insights into the trade-offs that viral lineages incur in multihost communities. Our results suggest that knowledge of the specialist/generalist strategies of circulating viral lineages could be useful in salmonid conservation programs to control disease.

15.
Ecol Evol ; 10(17): 9522-9531, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953080

RESUMO

The use of high-throughput, low-density sequencing approaches has dramatically increased in recent years in studies of eco-evolutionary processes in wild populations and domestication in commercial aquaculture. Most of these studies focus on identifying panels of SNP loci for a single downstream application, whereas there have been few studies examining the trade-offs for selecting panels of markers for use in multiple applications. Here, we detail the use of a bioinformatic workflow for the development of a dual-purpose SNP panel for parentage and population assignment, which included identifying putative SNP loci, filtering for the most informative loci for the two tasks, designing effective multiplex PCR primers, optimizing the SNP panel for performance, and performing quality control steps for downstream applications. We applied this workflow to two adjacent Alaskan Sockeye Salmon populations and identified a GTseq panel of 142 SNP loci for parentage and 35 SNP loci for population assignment. Only 50-75 panel loci were necessary for >95% accurate parentage, whereas population assignment success, with all 172 panel loci, ranged from 93.9% to 96.2%. Finally, we discuss the trade-offs and complexities of the decision-making process that drives SNP panel development, optimization, and testing.

16.
PLoS Genet ; 16(8): e1008348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845885

RESUMO

A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.


Assuntos
Distribuição Animal , Acúmulo de Mutações , Oncorhynchus kisutch/genética , Animais , Evolução Molecular , Modelos Genéticos
17.
Mol Ecol ; 29(4): 658-672, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957935

RESUMO

Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic-based estimates of inbreeding to investigate their relationship with eight adult traits in a captive-reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction-site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as "integrated" with the founding wild stock, with ongoing gene flow, and as "segregated" with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2 -F4 ; inbreeding F2 ). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Reprodução/genética , Salmão/genética , Animais , Cruzamento , Fertilidade/genética , Fluxo Gênico , Variação Genética/genética , Genômica/métodos , Humanos , Endogamia/métodos , Repetições de Microssatélites/genética , Fenótipo , Salmão/crescimento & desenvolvimento
19.
Annu Rev Anim Biosci ; 8: 117-143, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730428

RESUMO

Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104-106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.


Assuntos
Conservação dos Recursos Naturais/métodos , Genética Populacional , Salmão/genética , Animais , Evolução Biológica , Pesqueiros , Genômica
20.
Nat Ecol Evol ; 3(12): 1731-1742, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768021

RESUMO

Males and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.


Assuntos
Oncorhynchus mykiss , Animais , Feminino , Masculino , Fenótipo , Cromossomos Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA