Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7777): 237-241, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578526

RESUMO

Earth is heading towards a climate that last existed more than three million years ago (Ma) during the 'mid-Pliocene warm period'1, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing2,3 and peak global-mean sea level (GMSL) may have reached about 20 metres above the present-day value4,5. For sea-level rise of this magnitude, extensive retreat or collapse of the Greenland, West Antarctic and marine-based sectors of the East Antarctic ice sheets is required. Yet the relative amplitude of sea-level variations within glacial-interglacial cycles remains poorly constrained. To address this, we calibrate a theoretical relationship between modern sediment transport by waves and water depth, and then apply the technique to grain size in a continuous 800-metre-thick Pliocene sequence of shallow-marine sediments from Whanganui Basin, New Zealand. Water-depth variations obtained in this way, after corrections for tectonic subsidence, yield cyclic relative sea-level (RSL) variations. Here we show that sea level varied on average by 13 ± 5 metres over glacial-interglacial cycles during the middle-to-late Pliocene (about 3.3-2.5 Ma). The resulting record is independent of the global ice volume proxy3 (as derived from the deep-ocean oxygen isotope record) and sea-level cycles are in phase with 20-thousand-year (kyr) periodic changes in insolation over Antarctica, paced by eccentricity-modulated orbital precession6 between 3.3 and 2.7 Ma. Thereafter, sea-level fluctuations are paced by the 41-kyr period of cycles in Earth's axial tilt as ice sheets stabilize on Antarctica and intensify in the Northern Hemisphere3,6. Strictly, we provide the amplitude of RSL change, rather than absolute GMSL change. However, simulations of RSL change based on glacio-isostatic adjustment show that our record approximates eustatic sea level, defined here as GMSL unregistered to the centre of the Earth. Nonetheless, under conservative assumptions, our estimates limit maximum Pliocene sea-level rise to less than 25 metres and provide new constraints on polar ice-volume variability under the climate conditions predicted for this century.


Assuntos
Água do Mar/análise , Dióxido de Carbono/análise , Foraminíferos/química , Sedimentos Geológicos/química , História Antiga , Camada de Gelo/química , Nova Zelândia , Oceanos e Mares , Isótopos de Oxigênio/análise , Pressão Parcial
2.
Nature ; 562(7726): E5, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30018346

RESUMO

On page 234 of this Perspective, '50% decrease' has been corrected online to '50% increase' in the sentence "The pH of surface waters south of 60° S decreased by 0.2 between 2017 and 2070, equivalent to a 50% increase in the concentration of hydrogen ions since the pre-industrial period1."

3.
Nature ; 558(7709): 233-241, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899481

RESUMO

We present two narratives on the future of Antarctica and the Southern Ocean, from the perspective of an observer looking back from 2070. In the first scenario, greenhouse gas emissions remained unchecked, the climate continued to warm, and the policy response was ineffective; this had large ramifications in Antarctica and the Southern Ocean, with worldwide impacts. In the second scenario, ambitious action was taken to limit greenhouse gas emissions and to establish policies that reduced anthropogenic pressure on the environment, slowing the rate of change in Antarctica. Choices made in the next decade will determine what trajectory is realized.


Assuntos
Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Animais , Regiões Antárticas , Atmosfera/química , Biodiversidade , Dióxido de Carbono/análise , Pesqueiros , Cadeia Alimentar , Atividades Humanas , Camada de Gelo/química , Espécies Introduzidas , Água do Mar/análise , Fatores de Tempo
4.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26667911

RESUMO

Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome.

5.
Nature ; 526(7573): 421-5, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469052

RESUMO

Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.


Assuntos
Simulação por Computador , Congelamento , Aquecimento Global/estatística & dados numéricos , Camada de Gelo , Modelos Teóricos , Água do Mar/análise , Regiões Antárticas , Atmosfera/química , Aquecimento Global/prevenção & controle , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Temperatura Alta , Atividades Humanas , Oceanos e Mares , Fatores de Tempo , Incerteza
6.
Geobiology ; 11(4): 377-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682649

RESUMO

Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 107 cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by ß-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Sedimentos Geológicos/microbiologia , Regiões Antárticas , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Carga Bacteriana , Contagem de Células , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sedimentos Geológicos/química , Gelo , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Nature ; 413(6857): 719-23, 2001 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-11607028

RESUMO

Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degrees C warmer than at present and atmospheric CO2 concentrations were twice as high as today, the Antarctic ice sheets may have been unstable. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA