Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Vet World ; 15(7): 1785-1797, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36185531

RESUMO

Background and Aim: Cardiac time intervals (CTIs) can provide important information on the electrical and mechanical properties of the heart. We hypothesized that cardiac function can be described using the combined power of electrocardiography (ECG) and phonocardiography (PCG) signals. This study aimed to (1) validate a novel custom device in measuring CTI parameters; (2) compare CTI parameters with a commercially available device and standard transthoracic echocardiography (STE); and (3) compare calculated systolic performance index (SPI) and myocardial performance index (MPI) with Tei index from the STE. Materials and Methods: This study determined CTIs based on simultaneous ECG and PCG recordings in 14 healthy Beagle dogs using the custom-built device. These CTI parameters were compared with a commercially available device (Eko DUO ECG + Digital Stethoscope; Eko DUO) and the STE. Agreement of CTI parameters between the custom device and the commercially available device or STE was evaluated. Calculated SPI and MPI based on Wigger's diagram were proposed, compared with SPI and Tei index, and correlated with STE parameters. Results: We found that the ECG and PCG parameters measured from the custom-built device did not differ from the commercially available device and the STE. By combining ECG and PCG signals, we established CTI parameters in healthy dogs including indices for systolic function (SPI: QS1/S1S2) and global cardiac function {F1 ([QS1+S2]/S1S2), F2 ([RS1+S2]/S1S2), and F3 (RS1 + [QS2-QT]/S1S2)}. The SPI, F2, and F3 were comparable with echocardiographic parameters describing systolic (Pre-ejection period/left ventricular ejection time [LVET]) and Tei index ([MCOdur-LVET]/LVET), respectively. Only SPI and F3 were correlated significantly with MCOdur and heart rate, respectively. Conclusion: We have validated the use of the custom-built device to describe CTIs that are comparable to the commercially available device and STE in healthy Beagles. The proposed SPI and MPI derived from CTI parameters can be useful in clinical practice to describe the cardiac function, especially in areas where access to STE is constrained.

2.
Comput Methods Programs Biomed ; 205: 106088, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33906014

RESUMO

BACKGROUND AND OBJECTIVE: The triply periodic minimal surface (TPMS) method effectively mimics the porous scaffold for tissue engineering with continuous topology, pore interconnections, and high surface area to volume ratio. However, the process to generate a three-dimensional (3D) mesh of porous structure from the mimicked organs is complicated for biologists and sometimes requires various software. Herein, we present the standalone program called "Scaffolder" for generating the porous topology from the user-input 3D model to the open-source community. METHODS: The 3D mesh of a porous scaffold was used by the proposed method and dual-marching cubes algorithm. Afterward, the mesh was sliced into the contours to examine pore sizes by Feret diameter and Gilbert-Johnson-Keerthi distance. The relationships between the program parameters (i.e., grid size, angular frequency, and iso-level) and scaffold properties (i.e., pore size, porosity, and surface area ratio) were investigated. RESULTS: The developed program can generate and evaluate a porous scaffold. The median (IQR) absolute errors in grid size of 200, 300, 400, and 500 divisions were 1.92 (0.35-3.80), 1.00 (0.18-2.22), 0.53 (0-1.37), and 0.24 (0-0.74), respectively. Spearman's correlation showed the impact of angular frequency and iso-level on the pore size, porosity, and surface area of the generated scaffold (p<0.05). CONCLUSIONS: This study enables researchers to rapidly design the 3D mesh of porous scaffold design, evaluate scaffold properties, and customize the implicit function for various applications, especially in tissue engineering and computational structural analysis.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Porosidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-26736998

RESUMO

Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.


Assuntos
Simulação por Computador , Circulação Coronária/fisiologia , Balão Intra-Aórtico/métodos , Pressão Sanguínea , Vasos Coronários/fisiologia , Humanos , Modelos Cardiovasculares , Análise de Ondaletas
4.
Artigo em Inglês | MEDLINE | ID: mdl-26736999

RESUMO

The aim of this work is to study the hemodynamic changes in the cardiovascular system under different modes of Rotary Blood Pump (RBP) support. Continuous mode (constant pump speed) and co-pulse mode (increased pump speed in systole) are studied. Computer simulation studies have been conducted to evaluate the performances of these two modes under normal and pathological conditions. The pathological heart condition is simulated by reducing the maximum systolic elestance (Emax) in the cardiovascular system model. The model is implemented by using MATLAB Simulink. The pressure-volume loop of different heart conditions (normal heart: 100% of normal contractility, pathological heart: 30% of normal contractility) and the different modes of RBP support (8 krpm and 11 krpm in continuous mode, between 8 krpm and 11 krpm in co-pulse mode) are simulated. The results of this study show the slope of end systolic pressure volume relationship (ESPVR) changes in pathological condition. The reduction of area inside pressure volume loops depend on the increasing level of pump speed. The results indicated systolic aortic pressures in co-pulse mode are higher than in the continuous mode. In normal condition, the value of systolic aortic pressure in co-pulse mode is 113 mmHg and the values of systolic aortic pressures in continuous modes are 109 mmHg (8 k) and 95 mmHg (11 k). In pathological condition, the value of systolic aortic pressure in co pulse mode is 100 mmHg and the values of systolic aortic pressures in continuous modes are 90 mmHg (8 k) and 95 mmHg (11 k). The hemodynamics results of this study are comparable in vivo data, clinical data and other simulation studies. Therefore, this simulation enables hemodynamic studies in patients with end-stage heart failure, and patients under different modes of rotary blood pump support.


Assuntos
Circulação Assistida , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Modelos Cardiovasculares , Pressão Sanguínea , Simulação por Computador , Humanos , Fluxo Pulsátil , Sístole
5.
Artif Organs ; 36(5): 470-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22171892

RESUMO

In heart failure, diastolic dysfunction is responsible for about 50% of the cases, with higher prevalence in women and elderly persons and contributing similarly to mortality as systolic dysfunction. Whereas the cardiac systolic diagnostics in ventricular assist device patients from pump parameters have been investigated by several groups, the diastolic behavior has been barely discussed. This study focuses on the determination of ventricular relaxation during early diastole in rotary blood pump (RBP) recipients. In conventional cardiology, relaxation is usually evaluated by the minimum rate and the time constant of left ventricular pressure decrease, dP/dt(min) and τ(P) . Two new analogous indices derived from the pump flow waveform were investigated in this study: the minimum rate and the time constant of pump flow decrease, dQ/dt(min) and τ(Q) . The correspondence between the indices was investigated in a numerical simulation of the assisted circulation for different ventricular relaxation states (τ(P) ranging from 24 to 68 ms) and two RBP models characterized by linear and nonlinear pressure-flow characteristics. dQ/dt(min) and τ(Q) always correlated with the dP/dt(min) and τ(P) , respectively (r>0.97). These relationships were influenced by the nonlinear pump characteristics during partial support and by the pump speed during full support. To minimize these influences, simulation results suggest the evaluation of dQ/dt(min) and τ(Q) at a pump speed that corresponds to the borderline between partial and full support. In conclusion, at least in simulation, relaxation can be derived from pump data. This noninvasively accessible information could contribute to a continuous estimation of the remaining cardiac function and its eventual recovery.


Assuntos
Diástole , Coração Auxiliar , Modelos Cardiovasculares , Pressão Ventricular , Simulação por Computador , Humanos
6.
Artif Organs ; 34(9): 736-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20636446

RESUMO

Ventricular assist devices (VADs) are increasingly used for supporting blood circulation in heart failure patients. To protect or even to restore the myocardial function, a defined loading of the ventricle for training would be important. Therefore, a VAD control strategy was developed that provides an explicitly definable loading condition for the failing ventricle. A mathematical model of the cardiovascular system with an axial flow VAD was used to test the control strategy in the presence of a failing left ventricle, slight physical activity, and a recovering scenario. Furthermore, the proposed control strategy was compared to a conventional constant speed mode during hemodynamic changes (reduced venous return and arterial vasoconstriction). The physiological benefit of the control strategy was manifested by a large increase in the ventricular Frank-Starling reserve and by restoration of normal hemodynamics (5.1 L/min cardiac output at a left atrial pressure of 10 mmHg vs. 4.2 L/min at 21 mmHg in the unassisted case). The control strategy automatically reduced the pump speed in response to reduced venous return and kept the pump flow independent of the vasoconstriction condition. Most importantly, the ventricular load was kept stable within 1%, compared to a change of 75% for the constant speed. As a key feature, the proposed control strategy provides a defined and adjustable load to the failing ventricle by an automatic regulation of the VAD speed and allows a controlled training of the myocardium. This, in turn, may represent a potential additional tool to increase the number of patients showing recovery.


Assuntos
Insuficiência Cardíaca/terapia , Coração Auxiliar , Hemodinâmica , Função Ventricular Esquerda , Pressão Sanguínea , Volume Sanguíneo , Simulação por Computador , Estudos de Viabilidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Cardiovasculares , Análise Numérica Assistida por Computador , Desenho de Prótese , Recuperação de Função Fisiológica , Fatores de Tempo , Resistência Vascular , Vasoconstrição , Pressão Ventricular , Remodelação Ventricular
7.
J Heart Lung Transplant ; 29(1): 37-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19782591

RESUMO

BACKGROUND: The clinical application of rotary blood pumps (RBPs) for bridge-to-recovery and destination therapy has focused interest on the remaining contractile function of the heart and its course. This study reports a method to determine contractility that uses readily measured variables of the RBP. METHOD: The proposed index (I(Q)) is defined as the slope of a linear regression between the maximum derivative of the pump flow and its peak-to-peak value. I(Q) was compared with the maximal derivative of ventricular pressure (dP/dt(max)) vs end-diastolic volume (EDV) and the pre-load-recruitable stroke work. All indices were evaluated using computer simulations and animal experiments. For in vivo studies, a MicroMed-DeBakey ventricular assist device (VAD) was implanted in 7 healthy sheep. Ventricular contractility was examined under normal conditions and after pharmacologic intervention. For the computer simulation, variations of ventricular contractility, ventricular pre-load and after-load, and pump speeds were studied. RESULTS: In vivo and computer simulations showed the I(Q) index to be sensitive to changes of cardiac contractility, similar to other classic indices. For reduced cardiac contractility, it decreased to 9.3 +/- 3.9 (s(-1)) vs 15.3 +/- 4.0 (s(-1)) in the control condition (in vivo experiments). The I(Q) index was only marginally influenced by pre-load and after-load changes: a variation of 7.0% +/- 8.9% and 1.3% +/- 7.1%, respectively, was observed in computer simulations. CONCLUSIONS: The I(Q) index, which can be derived from pump data only, is a useful parameter for continuous monitoring of the cardiac contractility in patients with RBP support.


Assuntos
Circulação Sanguínea/fisiologia , Coração Auxiliar , Coração/fisiologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Animais , Simulação por Computador , Frequência Cardíaca/fisiologia , Modelos Lineares , Modelos Animais , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA