Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 361: 142401, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795918

RESUMO

The present study describes a novel double-modified strategy for developing high-performance thin-film composite reverse osmosis (TFC-RO) membranes by incorporating titanium-based metal organic frameworks (NH2-MIL-125) and functionalised multiwalled carbon nanotubes (MWCNTs) into the support layer and selective layer, respectively. Initially, the support layer was subjected to successive modifications using NH2-MIL-125 mixed with polysulfone (PSF) in dimethylformamide DMF solution to investigate their impact on the performance and properties of the support layer and resultant TFC-RO membranes. Results indicated that the new structure of the modified support layer had significant influences on the developed TFC-RO membranes. Notably, the pristine PSF support exhibited a large surface pore size, medium porosity, and strong hydrophobicity, resulting in a low-flux TFC-RO membrane. However, after modification with NH2-MIL-125, the optimal blend support demonstrated a small surface pore size, high porosity, and improved hydrophilicity, favouring the formation of a high performance TFC-RO membrane. The incorporation of functionalised MWCNTs nanochannels into the selective layer, using the optimal NH2-MIL-125-PSF blended support, resulted in a smoother and more hydrophilic TFC-RO membrane with enhanced negative charge to improve antifouling properties against negative foulants (i.e., nanoplastics (NPs) and bovine serum albumin (BSA)). The double-modified membrane (TFC-RO-DM) exhibited superior performance over the conventional PSF-TFC-RO membrane. Notably, the maximum water flux reached 39 L m-2.h-1 with 98.4% NaCl rejection. The membrane exhibited a high flux recovery rate of 92% following a 30-min physical cleaning process. Additionally, the TFC-RO-DM membrane displayed reduced fouling against NPs suggesting the great promise of this innovative double-modification approach for the advancement of high-performance TFC-RO membranes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Estruturas Metalorgânicas , Nanotubos de Carbono , Osmose , Purificação da Água , Nanotubos de Carbono/química , Purificação da Água/métodos , Estruturas Metalorgânicas/química , Porosidade , Poluentes Químicos da Água/química , Polímeros/química , Titânio/química
2.
Chemosphere ; 359: 142180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679179

RESUMO

The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.


Assuntos
Membranas Artificiais , Microplásticos , Nanopartículas , Nanotubos de Carbono , Osmose , Nanotubos de Carbono/química , Microplásticos/química , Nanopartículas/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/química , Incrustação Biológica/prevenção & controle
3.
Chemosphere ; 346: 140493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890801

RESUMO

The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.


Assuntos
Membranas Artificiais , Purificação da Água , Osmose , Purificação da Água/métodos , Cloreto de Sódio , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA