Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Lett ; 565: 216210, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150501

RESUMO

Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Via de Sinalização Hippo , Neoplasias Hepáticas/patologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
2.
Front Reprod Health ; 3: 719326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303988

RESUMO

Objective: Small non-coding RNAs, known as microRNAs (miRNAs), have emerging regulatory functions within the ovary that have been related to fertility. This study was undertaken to determine if circulating miRNAs reflect the changes associated with the parameters of embryo development and fertilization. Methods: In this cross-sectional pilot study. Plasma miRNAs were collected from 48 sequentially presenting women in the follicular phase prior to commencing in vitro fertilization (IVF). Circulating miRNAs were measured using locked nucleic acid (LNA)-based quantitative PCR (qPCR), while an updated miRNA data set was used to determine their level of expression. Results: Body mass index and weight were associated with the miRNAs let7b-3p and miR-375, respectively (p < 0.05), with the same relationship being found between endometrium thickness at oocyte retrieval and miR-885-5p and miR-34a-5p (p < 0.05). In contrast, miR-1260a was found to be inversely associated with anti-Mullerian hormone (AMH; p = 0.007), while miR-365a-3p, miR122-5p, and miR-34a-5p correlated with embryo fertilization rates (p < 0.05). However, when omitting cases of male infertility (n = 15), miR122-5p remained significant (p < 0.05), while miR-365a-3p and miR-34a-5p no longer differed; interestingly, however, miR1260a and mir93.3p became significant (p = 0.0087/0.02, respectively). Furthermore, age was negatively associated with miR-335-3p, miR-28-5p, miR-155-5p, miR-501-3p, and miR-497-5p (p < 0.05). Live birth rate was negatively associated with miR-335-3p, miR-100-5p, miR-497-5p, let-7d, and miR-574-3p (p < 0.05), but these were not significant when age was accounted for.However, with the exclusion of male factor infertility, all those miRNAs were no longer significant, though miR.150.5p emerged as significant (p = 0.042). A beta-regression model identified miR-1260a, miR-486-5p, and miR-132-3p (p < 0.03, p = 0.0003, p < 0.00001, respectively) as the most predictive for fertilization rate. Notably, changes in detectable miRNAs were not linked to cleavage rate, top quality embryos (G3D3), and blastocyst or antral follicle count. An ingenuity pathway analysis showed that miRNAs associated with age were also associated with the variables found in reproductive system diseases. Conclusion: Plasma miRNAs prior to the IVF cycle were associated with differing demographic and IVF parameters, including age, and may be predictive biomarkers of fertilization rate.

3.
Front Endocrinol (Lausanne) ; 11: 571357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101204

RESUMO

Background: Small noncoding microRNA (miRNA) have regulatory functions in polycystic ovary syndrome (PCOS) that differ to those in women without PCOS. However, little is known about miRNA expression in women with PCOS who are not insulin resistant (IR). Methods: Circulating miRNAs were measured using quantitative polymerase chain reaction (qPCR) in 24 non-obese BMI and age matched women with PCOS and 24 control women. A miRNA data set was used to determine miRNA levels. Results: Women with PCOS showed a higher free androgen index (FAI) and anti-mullerian hormone (AMH) but IR did not differ. Four miRNAs (miR-1260a, miR-18b-5p, miR-424-5p, and miR let-7b-3p) differed between control and PCOS women that passed the false discovery rate (FDR) out of a total of 177 circulating miRNAs that were detected. MiRNA let-7b-3p correlated with AMH in PCOS (p < 0.05). When the groups were combined, miR-1260a correlated with FAI and let-7b-3p correlated with body mass index (BMI) (p < 0.05). There was no correlation to androgen levels. Ingenuity pathway analysis showed that nine of the top 10 miRNAs reported were associated with inflammatory pathways. Conclusion: When IR did not differ between PCOS and control women, only four miRNA differed significantly suggesting that IR may be a driver for many of the miRNA changes reported. Let-7b-3p was related to AMH in PCOS, and to BMI as a group, whilst miR-1260a correlated with FAI. Androgen levels, however, had no effect upon circulating miRNA profiles. The expressed miRNAs were associated with the inflammatory pathway involving TNF and IL6.


Assuntos
MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Resistência à Insulina , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/genética , Adulto , Hormônio Antimülleriano/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Redes Reguladoras de Genes/fisiologia , Humanos , Projetos Piloto , Síndrome do Ovário Policístico/diagnóstico , Estudos Prospectivos , Adulto Jovem
4.
Sci Rep ; 9(1): 16306, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705013

RESUMO

Several studies have shown the expression of small non-coding microRNA (miRNA) changes in PCOS and their expression in follicular fluid has been described, though the number of studies remains small. In this prospective cohort study, miRNA were measured using quantitative polymerase chain reaction (qPCR) in 29 weight and aged matched anovulatory women with PCOS and 30 women without from follicular fluid taken at the time of oocyte retrieval who were undergoing in vitro fertilization (IVF); miRNA levels were determined from a miRNA data set. 176 miRNA were detected, of which 29 differed significantly between normal women and PCOS women. Of these, the top 7 (p < 0.015) were miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p, miR-382-5p, miR-425-3p. In PCOS, miR-382-5p correlated with age and free androgen index (FAI), miR-199b-5p correlated with anti-mullerian hormone (AMH) and miR-93-3p correlated with C-reactive protein (CRP). In normal controls, miR-127-3p, miR-382-5p and miR-425-3p correlated with the fertilisation rate; miR-127-3p correlated with insulin resistance and miR-381-3p correlated with FAI. Ingenuity pathway assessment revealed that 12 of the significantly altered miRNA related to reproductive pathways, 12 miRNA related to the inflammatory disease pathway and 6 were implicated in benign pelvic disease. MiRNAs differed in the follicular fluid between PCOS and normal control women, correlating with age, FAI, inflammation and AMH in PCOS, and with BMI, fertilization rate (3 miRNA), insulin resistance, FAI and inflammation in control women, according to Ingenuity Pathway Analysis.


Assuntos
MicroRNA Circulante , Líquido Folicular/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Adulto , Biomarcadores , Estudos de Casos e Controles , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Recuperação de Oócitos , Estudos Prospectivos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30687230

RESUMO

Background: Early metabolic responses following bariatric surgery appear greater than expected given the initial weight loss and coincide with improvement in diabetes. We hypothesized that small non-coding microRNA changes might contribute to regulating mechanisms for metabolic changes and weight loss in patients with severe obesity and diabetes. Methods: Twenty-nine type 2 patients with severe obesity (mean BMI 46.2 kg/m2) and diabetes underwent Roux-en-Y gastric bypass (RYGB) surgery. Clinical measurements and fasting blood samples were taken preoperatively and at day 21 postoperatively. Normalization of fasting glucose and HbA1c following bariatric surgery (short-term diabetes remission) was defined as withdrawal of anti-diabetic medication and fasting glucose < 100 mg/dL (5.6 mmol/L) or HbA1c < 6.0%. MicroRNA expression was determined by quantitative polymerase chain reaction and tested for significant changes after surgery. Results: BMI decreased by 3.8 kg/m2 21 days postoperatively. Eighteen of 29 RYGB (62%) had short-term diabetes remission. Changes from pre- to post-surgery in 32 of 175 microRNAs were nominally significant (p < 0.05). Following multiple comparison adjustment, changes in seven microRNAs remained significant: miR-7-5p, let-7f-5p, miR-15b-5p, let-7i-5p, miR-320c, miR-205-5p, and miR-335-5p. Four pathways were over-represented by these seven microRNAs, including diabetes and insulin resistance pathways. Conclusion: Seven microRNAs showed significant changes 21 days after bariatric surgery. Functional pathways of the altered microRNAs were associated with diabetes-, pituitary-, and liver-related disease, with expression in natural killer cells, and pivotal intestinal pathology suggesting possible mechanistic roles in early diabetes responses following bariatric surgery.

6.
Arch Biochem Biophys ; 589: 108-19, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416722

RESUMO

The emergence of a worldwide obesity epidemic has dramatically increased the prevalence of insulin resistance and metabolic syndrome, predisposing individuals to a greater risk for the development of non-alcoholic fatty liver disease, type II diabetes and atherosclerotic cardiovascular diseases. Current available pharmacological interventions combined with diet and exercise-based managements are still poorly effective for weight management, likely in part due to an incomplete understanding of regulatory mechanisms and pathways contributing to the systemic metabolic abnormalities under disturbed energy homeostasis. MicroRNAs, small non-coding RNAs that regulate posttranscriptional gene expression, have been increasingly described to influence shifts in metabolic pathways under various obesity-related disease settings. Here we review recent discoveries of the mechanistic role that microRNAs play in regulating metabolic functions in liver and adipose tissues involved in obesity associated disorders, and briefly discusses the potential candidates that are being pursued as viable therapeutic targets.


Assuntos
MicroRNAs , Obesidade/complicações , Obesidade/genética , Adipogenia , Animais , Dislipidemias/complicações , Humanos , Resistência à Insulina , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/metabolismo , Obesidade/patologia
7.
Nat Med ; 21(11): 1290-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26501192

RESUMO

Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dieta Hiperlipídica , Dislipidemias/genética , MicroRNAs/genética , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteínas E/genética , Colesterol/metabolismo , Estudo de Associação Genômica Ampla , Homeostase/genética , Humanos , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único
8.
Sci Transl Med ; 5(212): 212ra162, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24259050

RESUMO

MicroRNAs (miRNAs) regulate many aspects of human biology. They target mRNAs for translational repression or degradation through base pairing with 3' untranslated regions, primarily via seed sequences (nucleotides 2 to 8 in the mature miRNA sequence). A number of individual miRNAs and miRNA families share seed sequences and targets, but differ in the sequences outside of the seed. miRNAs have been implicated in the etiology of a wide variety of human diseases and therefore represent promising therapeutic targets. However, potential redundancy of different miRNAs sharing the same seed sequence and the challenge of simultaneously targeting miRNAs that differ significantly in nonseed sequences complicate therapeutic targeting approaches. We recently demonstrated effective inhibition of entire miRNA families using seed-targeting 8-mer locked nucleic acid (LNA)-modified antimiRs in short-term experiments in mammalian cells and in mice. However, the long-term efficacy and safety of this approach in higher organisms, such as humans and nonhuman primates, have not been determined. We show that pharmacological inhibition of the miR-33 family, key regulators of cholesterol/lipid homeostasis, by a subcutaneously delivered 8-mer LNA-modified antimiR in obese and insulin-resistant nonhuman primates results in derepression of miR-33 targets, such as ABCA1, increases circulating high-density lipoprotein cholesterol, and is well tolerated over 108 days of treatment. These findings demonstrate the efficacy and safety of an 8-mer LNA-antimiR against an miRNA family in a nonhuman primate metabolic disease model, suggesting that this could be a feasible approach for therapeutic targeting of miRNA families sharing the same seed sequence in human diseases.


Assuntos
Inativação Gênica , MicroRNAs/antagonistas & inibidores , Animais , HDL-Colesterol/sangue , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Primatas
9.
Mol Cell ; 42(5): 689-99, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21596603

RESUMO

Epigenetic regulation of gene expression by histone-modifying corepressor complexes is central to normal animal development. The NAD(+)-dependent deacetylase and gene repressor SIRT1 removes histone H4K16 acetylation marks and facilitates heterochromatin formation. However, the mechanistic contribution of SIRT1 to epigenetic regulation at euchromatic loci and whether it acts in concert with other chromatin-modifying activities to control developmental gene expression programs remain unclear. We describe here a SIRT1 corepressor complex containing the histone H3K4 demethylase LSD1/KDM1A and several other LSD1-associated proteins. SIRT1 and LSD1 interact directly and play conserved and concerted roles in H4K16 deacetylation and H3K4 demethylation to repress genes regulated by the Notch signaling pathway. Mutations in Drosophila SIRT1 and LSD1 orthologs result in similar developmental phenotypes and genetically interact with the Notch pathway in Drosophila. These findings offer new insights into conserved mechanisms of epigenetic gene repression and regulation of development by SIRT1 in metazoans.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Oxirredutases N-Desmetilantes/fisiologia , Receptores Notch/genética , Sirtuína 1/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Imunoprecipitação , Mutação , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Fenótipo , Receptores Notch/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
10.
Curr Atheroscler Rep ; 13(3): 202-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21461683

RESUMO

Defects in homeostatic regulation of cholesterol and fatty acids are associated with major cardiometabolic risk factors that are prevalent in type 2 diabetes and atherosclerotic cardiovascular disease. Regulatory input is found at many levels; however, recent findings have revealed pivotal roles for small non-coding RNAs (microRNAs) of the endogenous RNA interference pathway in post-transcriptional control of major regulatory mechanisms underpinning cholesterol and energy homeostasis. In addition, aberrant expression of microRNAs has been implicated in marked pathophysiologic events contributing to the progression and development of atherosclerosis, including loss of endothelial integrity, vascular smooth muscle cell proliferation, neointimal hyperplasia, and foam cell formation. This review surveys the impact of microRNA-mediated regulation in biological processes governing the cholesterol/lipoprotein metabolism, fatty acid ß-oxidation (eg by miR-122 and miR-33), and endothelial dysfunction related to atherosclerosis. Given the current advances in microRNA-based technologies, the clinical potential of microRNAs as novel therapeutic targets is highlighted as new alternative strategies to ameliorate cardiometabolic diseases.


Assuntos
Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , MicroRNAs , Músculo Liso Vascular/patologia , Proliferação de Células , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Homeostase/genética , Humanos , Metabolismo dos Lipídeos/genética , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Processamento Pós-Transcricional do RNA , Terapias em Estudo
11.
Science ; 328(5985): 1566-9, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20466882

RESUMO

Proper coordination of cholesterol biosynthesis and trafficking is essential to human health. The sterol regulatory element-binding proteins (SREBPs) are key transcription regulators of genes involved in cholesterol biosynthesis and uptake. We show here that microRNAs (miR-33a/b) embedded within introns of the SREBP genes target the adenosine triphosphate-binding cassette transporter A1 (ABCA1), an important regulator of high-density lipoprotein (HDL) synthesis and reverse cholesterol transport, for posttranscriptional repression. Antisense inhibition of miR-33 in mouse and human cell lines causes up-regulation of ABCA1 expression and increased cholesterol efflux, and injection of mice on a western-type diet with locked nucleic acid-antisense oligonucleotides results in elevated plasma HDL. Our findings indicate that miR-33 acts in concert with the SREBP host genes to control cholesterol homeostasis and suggest that miR-33 may represent a therapeutic target for ameliorating cardiometabolic diseases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , HDL-Colesterol/sangue , Colesterol/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Dieta , Regulação da Expressão Gênica , Homeostase , Humanos , Íntrons , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oligonucleotídeos Antissenso/farmacologia , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Regulação para Cima
12.
Methods Mol Biol ; 429: 237-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18695971

RESUMO

Methods for the detection of biologically relevant interactions by highly precise catalytic control elements based on hairpin ribozymes, and their subsequent analysis are described. These include ribozyme design, catalytic performance in real time as a function of fluorescence signal amplification, and applications for sensing protein and nucleic acid interactions in high-throughput formats. Detailed instructions for two of our main reporter ribozyme formats that either follow repressible or inducible regulatory mechanisms are provided. We have shown that these techniques can be applied for detecting diverse target molecules including microRNAs, or protein-protein interactions. These reporter systems thus represent a general way to obtain signal-amplifying sensors for diverse applications in molecular profiling.


Assuntos
MicroRNAs/análise , RNA Catalítico/química , Sequência de Bases , Catálise , Transferência Ressonante de Energia de Fluorescência , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo
13.
Blood Cells Mol Dis ; 38(1): 19-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17150386

RESUMO

The combination of specific ligand-binding aptamers with hairpin ribozyme catalysis generates molecules that can be controlled by external factors. Here we have generated hairpin ribozymes that can be regulated by a short DNA aptamer specific for human alpha-thrombin. This was achieved by constructing a ribozyme variant harboring an RNA sequence complementary to the aptamer, to which the aptamer can hybridize forming a heteroduplex. In this way, the DNA aptamer completely abolishes the catalytic activity of the ribozyme, due to the formation of an inactive ribozyme conformation. However, in the presence of the aptamer's target protein human alpha-thrombin, the inhibitory effect of the DNA aptamer is competitively neutralized and the ribozyme is activated in a highly specific fashion. Protein-responsive allosteric ribozymes are proposed to act as tools with potential applications in medicine where fast detection of clinically relevant targets is required.


Assuntos
Aptâmeros de Nucleotídeos/química , Regulação da Expressão Gênica/fisiologia , RNA Catalítico/metabolismo , Trombina/fisiologia , Aptâmeros de Nucleotídeos/metabolismo , Humanos
14.
RNA ; 11(10): 1514-20, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16199761

RESUMO

The hairpin ribozyme can catalyze the cleavage of RNA substrates by employing its conformational flexibility. To form a catalytic complex, the two domains A and B of the hairpin-ribozyme complex must interact with one another in a folding step called docking. We have constructed hairpin ribozyme variants harboring an aptamer sequence that can be allosterically induced by flavin mononucleotide (FMN). Domains A and B are separated by distinct bridge sequences that communicate the formation of the FMN-aptamer complex to domains A and B, facilitating their docking. In the presence of a short oligonucleotide that is complementary to the aptamer, catalytic activity of the ribozyme is completely abolished, due to the formation of an extended conformer that cannot perform catalysis. However, in the presence of the small molecule effector FMN, the inhibitory effect of the oligonucleotide is competitively neutralized and the ribozyme is activated 150-fold. We thus have established a new principle for the regulation of ribozyme catalysis in which two regulatory factors (an oligonucleotide and a small molecule) that switch the ribozyme's activity in opposite directions compete for the same binding site in the aptamer domain.


Assuntos
Mononucleotídeo de Flavina/metabolismo , Engenharia Genética , Oligonucleotídeos/metabolismo , RNA Catalítico/metabolismo , Regulação Alostérica , Sítio Alostérico , Pareamento de Bases , Sequência de Bases/genética , Sítios de Ligação , Catálise , Ativação Enzimática , Cinética , Estrutura Molecular , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Catalítico/química , RNA Catalítico/classificação , RNA Catalítico/genética , Especificidade por Substrato
15.
Nucleic Acids Res ; 32(10): 3212-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15199169

RESUMO

The hairpin ribozyme catalyses RNA cleavage by a mechanism utilizing its conformational flexibility during the docking of two independently folded internal loop domains A and B. Based on this mechanism, we designed hairpin ribozyme variants that can be induced or repressed by external effector oligonucleotides influencing the docking process. We incorporated a third domain C to assimilate alternate stable RNA motifs such as a pseudo-half-knot or an internal stem-loop structure. Small sequence changes in domain C allowed targeted switching of ribozyme activity: the same effector oligonucleotide can either serve as an inducer or repressor. The ribozymes were applied to trp leader mRNA, the RNA sequence tightly bound by l-tryptophan-activated trp-RNA-binding attenuation protein (TRAP). When domain C is complementary to this mRNA, ribozyme activity can be altered by annealing trp leader mRNA, then specifically reverted by its TRAP/tryptophan-mediated sequestration. This approach allows to precisely sense the activity status of a protein controlled by its metabolite molecule.


Assuntos
Engenharia Genética/métodos , RNA Catalítico/genética , RNA Catalítico/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , RNA Catalítico/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/análise
16.
J Am Chem Soc ; 126(3): 722-3, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14733539

RESUMO

The rational and straightforward design of hairpin ribozymes that can be sequence-specifically induced by external oligonucleotides is described. Due to intrinsic signal amplification, their sensitivity is at least an order of magnitude increased compared to standard molecular beacons. We applied this system to the detection of microRNAs, a recently discovered class of small endogenous RNA molecules that are involved in gene regulation. We show that the cognate microRNA can reliably and sensitively be detected at low concentrations in a mix of other microRNA sequences. These probes may be useful in applications that require direct detection of minute amounts of small DNAs or RNAs.


Assuntos
MicroRNAs/análise , RNA Catalítico/química , Animais , Catálise , Drosophila melanogaster/genética , Transferência Ressonante de Energia de Fluorescência/métodos , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
17.
Nat Biotechnol ; 20(7): 717-22, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12089558

RESUMO

Most approaches to monitoring interactions between biological macromolecules require large amounts of material, rely upon the covalent modification of an interaction partner, or are not amenable to real-time detection. We have developed a generalizable assay system based on interactions between proteins and reporter ribozymes. The assay can be configured in a modular fashion to monitor the presence and concentration of a protein or of molecules that modulate protein function. We report two applications of the assay: screening for a small molecule that disrupts protein binding to its nucleic acid target and screening for protein protein interactions. We screened a structurally diverse library of antibiotics for small molecules that modulate the activity of HIV-1 Rev-responsive ribozymes by binding to Rev. We identified an inhibitor that subsequently inhibited HIV-1 replication in cells. A simple format switch allowed reliable monitoring of domain-specific interactions between the blood-clotting factor thrombin and its protein partners. The rapid identification of interactions between proteins or of compounds that disrupt such interactions should have substantial utility for the drug-discovery process.


Assuntos
DNA de Cadeia Simples/metabolismo , Produtos do Gene rev/análise , Mapeamento de Interação de Proteínas/métodos , RNA Catalítico/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas/metabolismo , RNA Catalítico/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA