Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(40): e2401592, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38805745

RESUMO

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

2.
Membranes (Basel) ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295748

RESUMO

Recently, alkaline membrane water electrolysis, in which membranes are in direct contact with water or alkaline solutions, has gained attention. This necessitates new approaches to membrane characterization. We show how the mechanical properties of FAA3, PiperION, Nafion 212 and reinforced FAA3-PK-75 and PiperION PI-15 change when stress−strain curves are measured in temperature-controlled water. Since membranes show dimensional changes when the temperature changes and, therefore, may experience stresses in the application, we investigated seven different membrane types to determine if they follow the expected spring-like behavior or show hysteresis. By using a very simple setup which can be implemented in most laboratories, we measured the "true hydroxide conductivity" of membranes in temperature-controlled water and found that PI-15 and mTPN had higher conductivity at 60 °C than Nafion 212. The same setup was used to monitor the alkaline stability of membranes, and it was found that stability decreased in the order mTPN > PiperION > FAA3. XPS analysis showed that FAA3 was degraded by the attack of hydroxide ions on the benzylic position. Water permeability was analyzed, and mTPN had approximately two times higher permeability than PiperION and 50% higher permeability than FAA3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA