Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433634

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell immunotherapy has modified the concept of treatment in hematological malignancies. In comparison with pediatric patients, where responses are maintained over many years, older patients, such as those with non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM), present lower persistence of CAR-T cells that might be due to decreased fitness of T cells acquired with aging. Moreover, cord blood derived-NK cells (CB-NKs) and CAR-NK cells derived from CB-NK can be used 'off-the-shelf' as immune cells with antitumor properties for the treatment of cancer patients. However, to date, clinical studies have only demonstrated the safety of these therapies but not optimal efficacy. To confront the shortcomings of each therapy, we devised a novel approach consisting of simultaneous (CAR-)NK cell and CAR-T cell administration. In this setting, NK cells demonstrate an important immunoregulation of T cells that could be exploited to enhance the efficacy of CAR-T cells. METHODS: A combinatorial treatment based on either CAR-T and CAR-NK cells or CB-NK and CAR-T cells in two models of NHL and MM was performed. Antitumor efficacy was analyzed in vitro and in vivo, and parameters related to early activation, exhaustion and senescence of T cells were analyzed. RESULTS: We show that CAR-NK cells derived from CB-NK are only effective at high doses (high E:T ratio) and that their activity rapidly decreases over time in comparison with CAR-T cells. In comparison and to exploit the potential of 'off-the-shelf' CB-NK, we demonstrate that a low number of CB-NK in the CAR-T cell product promotes an early activation of CAR-T cells and their migration to MM cells leading to enhanced anti-MM efficacy. Moreover, cytokines related to CRS development were not increased, and importantly, CB-NK enhanced the fitness of both CARpos and CARneg T cells, promoting lower levels of exhaustion and senescence. CONCLUSION: This study demonstrates a relevant immunoregulatory role of CB-NK collaborating with CAR-T cells to enhance their antitumor activity. A novel and different approach to consider in CAR-T cell immunotherapy studies is presented here with the goal to enhance the efficacy of the treatment.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias Hematológicas/imunologia , Xenoenxertos , Humanos , Células K562 , Células Matadoras Naturais/transplante , Camundongos , Linfócitos T/transplante
2.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34021033

RESUMO

BACKGROUND: The adoptive transfer of tumor-infiltrating lymphocytes (TIL) has demonstrated robust efficacy in metastatic melanoma patients. Tumor antigen-loaded dendritic cells (DCs) are believed to optimally activate antigen-specific T lymphocytes. We hypothesized that the combined transfer of TIL, containing a melanoma antigen recognized by T cells 1 (MART-1) specific population, with MART-1-pulsed DC will result in enhanced proliferation and prolonged survival of transferred MART-1 specific T cells in vivo ultimately leading to improved clinical responses. DESIGN: We tested the combination of TIL and DC in a phase II clinical trial of patients with advanced stage IV melanoma. HLA-A0201 patients whose early TIL cultures demonstrated reactivity to MART-1 peptide were randomly assigned to receive TIL alone or TIL +DC pulsed with MART-1 peptide. The primary endpoint was to evaluate the persistence of MART-1 TIL in the two arms. Secondary endpoints were to evaluate clinical response and survival. RESULTS: Ten patients were given TIL alone while eight patients received TIL+DC vaccine. Infused MART-1 reactive CD8+ TIL were tracked in the blood over time by flow cytometry and results show good persistence in both arms, with no difference in the persistence of MART-1 between the two arms. The objective response rate was 30% (3/10) in the TIL arm and 50% (4/8) in the TIL+DC arm. All treatments were well tolerated. CONCLUSIONS: The combination of TIL +DC showed no difference in the persistence of MART-1 TIL compared with TIL therapy alone. Although more patients showed a clinical response to TIL+DC therapy, this study was not powered to resolve differences between groups. TRIAL REGISTRATION NUMBER: NCT00338377.


Assuntos
Vacinas Anticâncer/uso terapêutico , Células Dendríticas/transplante , Imunoterapia Adotiva , Depleção Linfocítica , Linfócitos do Interstício Tumoral/transplante , Melanoma/terapia , Neoplasias Cutâneas/terapia , Linfócitos T/transplante , Adolescente , Adulto , Vacinas Anticâncer/efeitos adversos , Terapia Combinada , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Depleção Linfocítica/efeitos adversos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígeno MART-1/imunologia , Antígeno MART-1/metabolismo , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/secundário , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
3.
Haematologica ; 106(1): 173-184, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919085

RESUMO

Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in the treatment of patients with relapsed or refractory hematological B cell malignancies. In the recent years, B-cell maturation antigen (BCMA) has appeared as a promising antigen to target using a variety of immuno-therapy treatments including CART cells, for MM patients. To this end, we generated clinical-grade murine CART cells directed against BCMA, named ARI2m cells. Having demonstrated its efficacy, and in an attempt to avoid the immune rejection of CART cells by the patient, the single chain variable fragment was humanized, creating ARI2h cells. ARI2h cells demonstrated comparable in vitro and in vivo efficacy to ARI2m cells, and superiority in cases of high tumor burden disease. In terms of inflammatory response, ARI2h cells showed a lower TNFα production and lower in vivo toxicity profile. Large-scale expansion of both ARI2m and ARI2h cells was efficiently conducted following Good Manufacturing Practice guidelines, obtaining the target CART cell dose required for treatment of multiple myeloma patients. Moreover, we demonstrate that soluble BCMA and BCMA released in vesicles impacts on CAR-BCMA activity. In summary, this study sets the bases for the implementation of a clinical trial (EudraCT code: 2019-001472-11) to study the efficacy of ARI2h cell treatment for multiple myeloma patients.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Animais , Antígeno de Maturação de Linfócitos B , Humanos , Imunoterapia Adotiva , Camundongos , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T
4.
Cytotherapy ; 23(2): 119-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303326

RESUMO

BACKGROUND AIMS: The genus Cryptococcus comprises two major fungal species that cause clinical infections in humans: Cryptococcus gattii and Cryptococcus neoformans. To establish invasive human disease, inhaled cryptococci must penetrate the lung tissue and reproduce. Each year, about 1 million cases of Cryptococcus infection are reported worldwide, and the infection's mortality rate ranges from 20% to 70%. Many HIV+/AIDS patients are affected by Cryptococcus infections, with 220,000 cases of cryptococcal meningitis reported worldwide in this population every year (C. neoformans infection statistics, via the Centers for Disease Control and Prevention, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/statistics.html). To escape from host immune cell attack, Cryptococcus covers itself in a sugar-based capsule composed primarily of glucuronoxylomannan (GXM). To evade phagocytosis, yeast cells increase to a >45-µm perimeter and become titan, or giant, cells. Cryptococci virulence is directly proportional to the percentage of titan/giant cells present during Cryptococcus infection. To combat cryptococcosis, the authors propose the redirection of CD8+ T cells to target the GXM in the capsule via expression of a GXM-specific chimeric antigen receptor (GXMR-CAR). RESULTS: GXMR-CAR has an anti-GXM single-chain variable fragment followed by an IgG4 stalk in the extracellular domain, a CD28 transmembrane domain and CD28 and CD3-ς signaling domains. After lentiviral transduction of human T cells with the GXMR-CAR construct, flow cytometry demonstrated that 82.4% of the cells expressed GXMR-CAR on their surface. To determine whether the GXMR-CAR+ T cells exhibited GXM-specific recognition, these cells were incubated with GXM for 24 h and examined with the use of brightfield microscopy. Large clusters of proliferating GXMR-CAR+ T cells were observed in GXM-treated cells, whereas no clusters were observed in control cells. Moreover, the interaction of GXM with GXMR-CAR+ T cells was detected via flow cytometry by using a GXM-specific antibody, and the recognition of GXM by GXMR-CAR T cells triggered the secretion of granzyme and interferon gamma (IFN-γ). The ability of GXMR-CAR T cells to bind to the yeast form of C. neoformans was detected by fluorescent microscopy, but no binding was detected in mock-transduced control T cells (NoDNA T cells). Moreover, lung tissue sections were stained with Gomori Methenamine Silver and evaluated by NanoZoomer (Hamamatsu), revealing a significantly lower number of titan cells, with perimeters ranging from 50 to 130 µm and giant cells >130 µm in the CAR T-cell treated group when compared with other groups. Therefore, the authors validated the study's hypothesis by the redirection of GXMR-CAR+ T cells to target GXM, which induces the secretion of cytotoxic granules and IFN-γ that will aid in the control of cryptococcosis CONCLUSIONS: Thus, these findings reveal that GXMR-CAR+ T cells can target C. neoformans. Future studies will be focused on determining the therapeutic efficacy of GXMR-CAR+ T cells in an animal model of cryptococcosis.


Assuntos
Cryptococcus neoformans , Polissacarídeos , Receptores de Antígenos Quiméricos , Animais , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
5.
Methods Mol Biol ; 2097: 267-272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31776932

RESUMO

Positron emission tomography (PET) using 89Zr is a clinically relevant imaging modality that enables long-term monitoring of adoptively transferred immune cells. This article describes a two-step radiometal labeling procedure utilizing the bifunctional siderophore p-isothiocyanatobenzyl-desferrioxamine (DFO-Bz-NCS) that chelates 89Zr with high affinity and binds covalently to primary amines of cell-surface proteins via its isothiocyanate moiety. Cells labeled with 89Zr-DFO-Bz-NCS remain viable and retain the radiolabel, enabling repetitive PET imaging of adoptively transferred immune cells with high sensitivity and specificity for up to 2 weeks.


Assuntos
Transferência Adotiva/métodos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Animais , Sobrevivência Celular , Desferroxamina/química , Camundongos
6.
Bioengineering (Basel) ; 5(4)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487391

RESUMO

Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

7.
Bioconjug Chem ; 29(9): 3180-3195, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30168713

RESUMO

Quantitative imaging of apoptosis in vivo could enable real-time monitoring of acute cell death pathologies such as traumatic brain injury, as well as the efficacy and safety of cancer therapy. Here, we describe the development and validation of F-18-labeled caspase-3 substrates for PET/CT imaging of apoptosis. Preliminary studies identified the O-benzylthreonine-containing substrate 2MP-TbD-AFC as a highly caspase 3-selective and cell-permeable fluorescent reporter. This lead compound was converted into the radiotracer [18F]-TBD, which was obtained at 10% decay-corrected yields with molar activities up to 149 GBq/µmol on an automated radiosynthesis platform. [18F]-TBD accumulated in ovarian cancer cells in a caspase- and cisplatin-dependent fashion. PET imaging of a Jo2-induced hepatotoxicity model showed a significant increase in [18F]-TBD signal in the livers of Jo2-treated mice compared to controls, driven through a reduction in hepatobiliary clearance. A chemical control tracer that could not be cleaved by caspase 3 showed no change in liver accumulation after induction of hepatocyte apoptosis. Our data demonstrate that [18F]-TBD provides an immediate pharmacodynamic readout of liver apoptosis in mice by dynamic PET/CT and suggest that [18F]-TBD could be used to interrogate apoptosis in other disease states.


Assuntos
Apoptose , Caspase 3/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 113(48): E7788-E7797, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849617

RESUMO

Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.


Assuntos
Interleucina-15/metabolismo , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Animais , Antígenos CD19/metabolismo , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Células Precursoras de Linfócitos T/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
9.
Mol Imaging Biol ; 18(6): 838-848, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27246312

RESUMO

PURPOSE: We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. PROCEDURES: We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19+ artificial antigen-presenting cells. RESULTS: After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19+ targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[18F]fluoro-5-ethyl-1-ß-D-arabinofuranosyl-uracil ([18F]FEAU). CONCLUSION: This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.


Assuntos
Herpesvirus Humano 1/enzimologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Timidina Quinase/metabolismo , Transposases/metabolismo , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/química , Linhagem Celular , Ganciclovir/farmacologia , Técnicas de Transferência de Genes , Humanos , Luciferases/metabolismo , Camundongos , Compostos Radiofarmacêuticos/química , Transgenes , Xenopus
10.
Sci Rep ; 6: 21757, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902653

RESUMO

Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients.


Assuntos
Desoxirribonucleases/genética , Deleção de Genes , Antígenos HLA-A/genética , Transplante de Células-Tronco Hematopoéticas/etnologia , Células-Tronco Hematopoéticas/imunologia , Alelos , Animais , Desoxirribonucleases/metabolismo , Seleção do Doador/ética , Expressão Gênica , Engenharia Genética/métodos , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Acessibilidade aos Serviços de Saúde/ética , Transplante de Células-Tronco Hematopoéticas/ética , Células-Tronco Hematopoéticas/citologia , Teste de Histocompatibilidade , Humanos , Camundongos , Grupos Raciais , Transplante Heterólogo , Transplante Homólogo , Doadores não Relacionados , Dedos de Zinco
11.
Cancer Res ; 75(17): 3505-18, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330164

RESUMO

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Assuntos
Antígenos de Neoplasias/imunologia , Receptores ErbB/imunologia , Neoplasias/imunologia , Receptores de Antígenos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Epitopos/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Receptores de Antígenos/uso terapêutico , Transdução de Sinais , Linfócitos T/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 10(8): e0133512, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244761

RESUMO

Histone deacetylases (HDAC's) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein, we report the radiosyntheses of the second generation of HDAC class IIa-specific radiotracers: 6-(di-fluoroacetamido)-1-hexanoicanilide (DFAHA) and 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]-TFAHA). The selectivity of these radiotracer substrates to HDAC class IIa enzymes was assessed in vitro, in a panel of recombinant HDACs, and in vivo using PET/CT imaging in rats. [18F]TFAHA showed significantly higher selectivity for HDAC class IIa enzymes, as compared to [18F]DFAHA and previously reported [18F]FAHA. PET imaging with [18F]TFAHA can be used to visualize and quantify spatial distribution and magnitude of HDAC class IIa expression-activity in different organs and tissues in vivo. Furthermore, PET imaging with [18F]TFAHA may advance the understanding of HDACs class IIa mediated epigenetic regulation of normal and pathophysiological processes, and facilitate the development of novel HDAC class IIa-specific inhibitors for therapy of different diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Diagnóstico por Imagem/métodos , Epigênese Genética , Histona Desacetilases/metabolismo , Traçadores Radioativos , Animais , Autorradiografia , Radioisótopos de Flúor/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Especificidade por Substrato , Tomografia Computadorizada por Raios X/métodos
13.
Blood ; 125(9): 1502-6, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25428215

RESUMO

Adoptive therapy with regulatory T cells (Tregs) to prevent graft-versus-host disease (GVHD) would benefit from a strategy to improve homing to the sites of inflammation. We hypothesized that adding fucose to human Tregs, forming the Sialyl Lewis X moiety on P-selectin glycoprotein ligand-1, would improve their trafficking pattern. The selectin pathway recruiter, α-1,3-fucosyltransferase-VI enzyme, significantly increased Treg surface fucosylation (66% vs 8%). In a xenogenic GVHD mouse model, fucosylated Tregs showed prolonged periods of in vivo persistence. When given at a lower dose compared with the untreated Tregs, the murine recipients of fucosylated Tregs maintained weight, had ameliorated clinical GVHD, and improved survival (70% vs 30%; P < .0001). These preclinical data indicate that fucosylated human Tregs is an effective strategy for prevention of GVHD and, as such, warrants consideration for future clinical trials.


Assuntos
Modelos Animais de Doenças , Fucose/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Linfócitos T Reguladores/imunologia , Animais , Western Blotting , Células Cultivadas , Selectina E/metabolismo , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Sangue Fetal/metabolismo , Citometria de Fluxo , Fucosiltransferases/metabolismo , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
14.
Proc Natl Acad Sci U S A ; 111(29): 10660-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002471

RESUMO

Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated "D-CAR") upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR(+) T cells for clinical trials. The D-CAR(+) T cells exhibited specificity for ß-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR(+) T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR(+) T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.


Assuntos
Aspergilose/imunologia , Aspergilose/terapia , Bioengenharia/métodos , Carboidratos/antagonistas & inibidores , Infecções Oportunistas/imunologia , Infecções Oportunistas/terapia , Linfócitos T/imunologia , Animais , Antígenos CD19/metabolismo , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Dexametasona/farmacologia , Humanos , Hifas/efeitos dos fármacos , Hifas/fisiologia , Imunofenotipagem , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Infecções Oportunistas/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
15.
J Biomech Eng ; 136(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24658653

RESUMO

This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in experimental settings.


Assuntos
Apoptose , Técnicas de Cultura de Células/métodos , Proteínas de Choque Térmico HSP70/genética , Necrose , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Resposta ao Choque Térmico , Humanos
16.
Cytotherapy ; 16(1): 90-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24480547

RESUMO

BACKGROUND AIMS: Naturally occurring regulatory T cells (Treg) are emerging as a promising approach for prevention of graft-versus-host disease (GvHD), which remains an obstacle to the successful outcome of allogeneic hematopoietic stem cell transplantation. However, Treg only constitute 1-5% of total nucleated cells in cord blood (CB) (<3 × 106 cells), and therefore novel methods of Treg expansion to generate clinically relevant numbers are needed. METHODS: Several methodologies are currently being used for ex vivo Treg expansion. We report a new approach to expand Treg from CB and demonstrate their efficacy in vitro by blunting allogeneic mixed lymphocyte reactions and in vivo by preventing GvHD through the use of a xenogenic GvHD mouse model. RESULTS: With the use of magnetic cell sorting, naturally occurring Treg were isolated from CB by the positive selection of CD25⁺ cells. These were expanded to clinically relevant numbers by use of CD3/28 co-expressing Dynabeads and interleukin (IL)-2. Ex vivo-expanded Treg were CD4⁺25⁺ FOXP3⁺127(lo) and expressed a polyclonal T-cell receptor, Vß repertoire. When compared with conventional T-lymphocytes (CD4⁺25⁻ cells), Treg consistently showed demethylation of the FOXP3 TSDR promoter region and suppression of allogeneic proliferation responses in vitro. CONCLUSIONS: In our NOD-SCID IL-2Rγ(null) xenogeneic model of GvHD, prophylactic injection of third-party, CB-derived, ex vivo-expanded Treg led to the prevention of GvHD that translated into improved GvHD score, decreased circulating inflammatory cytokines and significantly superior overall survival. This model of xenogenic GvHD can be used to study the mechanism of action of CB Treg as well as other therapeutic interventions.


Assuntos
Sangue Fetal/transplante , Doença Enxerto-Hospedeiro/terapia , Linfócitos T Reguladores/citologia , Transplante Homólogo/efeitos adversos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Camundongos , Linfócitos T Reguladores/transplante
17.
Cytotherapy ; 16(1): 84-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24094497

RESUMO

BACKGROUND AIMS: Advantages associated with the use of cord blood (CB) transplantation include the availability of cryopreserved units, ethnic diversity and lower incidence of graft-versus-host disease compared with bone marrow or mobilized peripheral blood. However, poor engraftment remains a major obstacle. We and others have found that ex vivo fucosylation can enhance engraftment in murine models, and now ex vivo treatment of CB with fucosyltransferase (FT) VI before transplantation is under clinical evaluation (NCT01471067). However, FTVII appears to be more relevant to hematopoietic cells and may alter acceptor substrate diversity. The present study compared the ability of FTVI and FTVII to improve the rapidity, magnitude, multi-lineage and multi-tissue engraftment of human CB hematopoietic stem and progenitor cells (HSPCs) in vivo. METHODS: CD34-selected CB HSPCs were treated with recombinant FTVI, FTVII or mock control and then injected into immunodeficient mice and monitored for multi-lineage and multi-tissue engraftment. RESULTS: Both FTVI and FTVII fucosylated CB CD34⁺ cells in vitro, and both led to enhanced rates and magnitudes of engraftment compared with untreated CB CD34⁺ cells in vivo. Engraftment after treatment with either FT was robust at multiple time points and in multiple tissues with similar multi-lineage potential. In contrast, only FTVII was able to fucosylate T and B lymphocytes. CONCLUSIONS: Although FTVI and FTVII were found to be similarly able to fucosylate and enhance the engraftment of CB CD34⁺ cells, differences in their ability to fucosylate lymphocytes may modulate graft-versus-tumor or graft-versus-host effects and may allow further optimization of CB transplantation.


Assuntos
Sangue Fetal/efeitos dos fármacos , Fucosiltransferases/administração & dosagem , Doença Enxerto-Hospedeiro/terapia , Animais , Modelos Animais de Doenças , Sangue Fetal/citologia , Sangue Fetal/transplante , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos
18.
PLoS One ; 8(10): e76781, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204673

RESUMO

Natural killer (NK) cells are important mediators of anti-tumor immunity and are active against several hematologic malignancies, including multiple myeloma (MM). Umbilical cord blood (CB) is a promising source of allogeneic NK cells but large scale ex vivo expansion is required for generation of clinically relevant CB-derived NK (CB-NK) cell doses. Here we describe a novel strategy for expanding NK cells from cryopreserved CB units using artificial antigen presenting feeder cells (aAPC) in a gas permeable culture system. After 14 days, mean fold expansion of CB-NK cells was 1848-fold from fresh and 2389-fold from cryopreserved CB with >95% purity for NK cells (CD56(+)/CD3(-)) and less than 1% CD3(+) cells. Though surface expression of some cytotoxicity receptors was decreased, aAPC-expanded CB-NK cells exhibited a phenotype similar to CB-NK cells expanded with IL-2 alone with respect to various inhibitory receptors, NKG2C and CD94 and maintained strong expression of transcription factors Eomesodermin and T-bet. Furthermore, CB-NK cells formed functional immune synapses with and demonstrated cytotoxicity against various MM targets. Finally, aAPC-expanded CB-NK cells showed significant in vivo activity against MM in a xenogenic mouse model. Our findings introduce a clinically applicable strategy for the generation of highly functional CB-NK cells which can be used to eradicate MM.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Proliferação de Células , Sangue Fetal/imunologia , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/imunologia , Animais , Complexo CD3/imunologia , Complexo CD3/metabolismo , Antígeno CD56/imunologia , Antígeno CD56/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/imunologia , Interleucina-2/imunologia , Interleucina-2/farmacologia , Células K562 , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Microscopia Confocal , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Circ Cardiovasc Imaging ; 5(1): 94-101, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22135400

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into endothelial cells in vivo. However, it is unknown if the differentiated MSCs persist in vivo and if this potential persistence contributes to functional improvement after experimental myocardial infarction. METHODS AND RESULTS: We generated a lentivector encoding 2 distinct reporter genes, one driven by a constitutive murine stem cell virus promoter and the other driven by an endothelial-specific Tie-2 promoter. The endothelial specificity of the lentivector was validated by its expression in endothelial cells but not in human MSCs (hMSCs). The lentivirus-transduced hMSCs were injected into peri-infarct areas of the hearts of severe combined immune-deficient mice. Persistence of injected cells was tracked by bioluminescence imaging (BLI) and verified by immunohistochemical staining. The BLI signal from the endothelial-specific reporter revealed that hMSCs differentiated into endothelial cells 48 hours after injection. However, both the constitutive and endothelial-specific BLI signals disappeared by day 50. Nonetheless, the improvement in left ventricle ejection fraction with hMSC therapy persisted for up to 6 months. Immunohistochemical staining showed that hMSC-derived endothelial cells integrated into endogenous CD31(+) vessels. Furthermore, hMSC-transplanted hearts had more CD31(+) vessels and a lesser degree of cardiac fibrosis compared with the controls at 6 months. CONCLUSIONS: hMSCs differentiated into endothelial cells and integrated into blood vessels after experimental myocardial infarction. The differentiated hMSCs only lasted for up to 50 days in vivo, but improvement in cardiac function persisted for up to 6 months. Increased angiogenesis and decreased fibrosis were associated with cardiac functional improvement after hMSC transplantation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Função Ventricular Esquerda , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Fibrose , Genes Reporter , Humanos , Medições Luminescentes , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Tempo
20.
PLoS One ; 6(9): e22949, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912635

RESUMO

The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18)F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18)F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Arabinofuranosiluracila/análogos & derivados , Linhagem Celular , Separação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/diagnóstico por imagem , Células Endoteliais/patologia , Estudos de Viabilidade , Genes Reporter/genética , Herpesvirus Humano 1/enzimologia , Linfonodos/patologia , Vasos Linfáticos/patologia , Linfografia , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/diagnóstico por imagem , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Suínos , Timidina Quinase/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA