Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Methods Mol Biol ; 2609: 91-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515831

RESUMO

PolyADP-ribosylation is a posttranslational modification of proteins that results from enzymatic synthesis of poly(ADP-ribose) with NAD+ as the substrate. A unique characteristic of polyADP-ribosylation is that the poly(ADP-ribose) chain can have 200 or more ADP-ribose residues in branched patterns, and the presence and variety of these chains can have substantive effects on protein function. To understand how polyADP-ribosylation affects biological processes, it is important to know the physiological level of poly(ADP-ribose) in cells. Under normal cell physiological conditions and in the absence of any exogenous DNA damaging agents, we found that the concentration of poly(ADP-ribose) in HeLa cells is approximately 0.04 pmol (25 pg)/106 cells, as measured with a double-antibody sandwich, enzyme-linked immunosorbent assay protocol that avoids artificial activation of PARP1 during cell lysis. Notably, this system demonstrated that the poly(ADP-ribose) level peaks in S phase and that the average cellular turnover of a single poly(ADP-ribose) is less than 40 s.


Assuntos
Poli Adenosina Difosfato Ribose , Ribose , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Células HeLa , Adenosina Difosfato Ribose/metabolismo , Ensaio de Imunoadsorção Enzimática , Glicosídeo Hidrolases/metabolismo
2.
Exp Cell Res ; 417(1): 113163, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447104

RESUMO

Protein targets of polyADP-ribosylation undergo covalent modification with high-molecular-weight, branched poly(ADP-ribose) (PAR) of lengths up to 200 or more ADP-ribose residues derived from NAD+. PAR polymerase 1 (PARP1) is the most abundant and well-characterized enzyme involved in PAR biosynthesis. Extensive studies have been carried out to determine how polyADP-ribosylation (PARylation) regulates cell proliferation during cell cycle, with conflicting conclusions. Since significant activation of PARP1 occurs during cell lysis in vitro, we changed the standard method for cell lysis, and using our sensitive ELISA system, quantified without addition of a PAR glycohydrolase inhibitor and clarified that the PAR level is significantly higher in S phase than that in G1. Under normal condition in the absence of exogenous DNA-damaging agent, PAR turns over with a half-life of <40 s; consistent with significant decrease of NAD+ levels in S phase, which is rescued by PARP inhibitors, in line with the observed rapid turnover of PAR. PARP inhibitors delayed cell cycle in S phase and decreased cell proliferation. Our results underscore the importance of a suitable assay system to measure rapid PAR chain dynamics in living cells and aid our understanding of the function of PARylation during the cell cycle.


Assuntos
Poli Adenosina Difosfato Ribose , Inibidores de Poli(ADP-Ribose) Polimerases , Ciclo Celular , Divisão Celular , Células HeLa , Humanos , NAD , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo
3.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850606

RESUMO

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Assuntos
Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , COVID-19/prevenção & controle , Preparações de Plantas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Proteínas M de Coronavírus/antagonistas & inibidores , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Stephania/química , Células Vero
4.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 12): 459-464, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866601

RESUMO

Eukaryotic protein kinases contain an Asp-Phe-Gly (DFG) motif, the conformation of which is involved in controlling the catalytic activity, at the N-terminus of the activation segment. The motif can be switched between active-state (DFG-in) and inactive-state (DFG-out) conformations: however, the mechanism of conformational change is poorly understood, partly because there are few reports of the DFG-out conformation. Here, a novel crystal structure of nonphosphorylated human mitogen-activated protein kinase kinase 1 (MEK1; amino acids 38-381) complexed with ATP-γS is reported in which MEK1 adopts the DFG-out conformation. The crystal structure revealed that the structural elements (the αC helix and HRD motif) surrounding the active site are involved in the formation/stabilization of the DFG-out conformation. The ATP-γS molecule was bound to the canonical ATP-binding site in a different binding mode that has never been found in previously determined crystal structures of MEK1. This novel ATP-γS binding mode provides a starting point for the design of high-affinity inhibitors of nonphosphorylated inactive MEK1 that adopts the DFG-out conformation.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Quinases , Cristalografia por Raios X , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química
5.
Biophys Physicobiol ; 18: 226-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745807

RESUMO

More than one and half years have passed, as of August 2021, since the COVID-19 caused by the novel coronavirus named SARS-CoV-2 emerged in 2019. While the recent success of vaccine developments likely reduces the severe cases, there is still a strong requirement of safety and effective therapeutic drugs for overcoming the unprecedented situation. Here we review the recent progress and the status of the drug discovery against COVID-19 with emphasizing a structure-based perspective. Structural data regarding the SARS-CoV-2 proteome has been rapidly accumulated in the Protein Data Bank, and up to 68% of the total amino acid residues encoded in the genome were covered by the structural data. Despite a global effort of in silico and in vitro screenings for drug repurposing, there is only a limited number of drugs had been successfully authorized by drug regulation organizations. Although many approved drugs and natural compounds, which exhibited antiviral activity in vitro, were considered potential drugs against COVID-19, a further multidisciplinary investigation is required for understanding the mechanisms underlying the antiviral effects of the drugs.

6.
iScience ; 24(8): 102920, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430810

RESUMO

Myoglobin (Mb) is highly concentrated in the myocytes of diving mammals such as whales and seals, in comparison with land animals, and its molecular evolution has played a crucial role in their deep-sea adaptation. We previously resurrected ancestral whale Mbs and demonstrated the evolutional strategies for higher solubility under macromolecular crowding conditions. Pinnipeds, such as seals and sea lions, are also expert diving mammals with Mb-rich muscles. In the present study, we resurrected ancestral pinniped Mbs and investigated their biochemical and structural properties. Comparisons between pinniped and whale Mbs revealed the common and distinctive strategies for the deep-sea adaptation. The overall evolution processes, gaining precipitant tolerance and improving thermodynamic stability, were commonly observed. However, the strategies for improving the folding stability differed, and the pinniped Mbs exploited the shielding of hydrophobic surfaces more effectively than the whale Mbs.

7.
FEBS Lett ; 594(12): 1960-1973, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32379896

RESUMO

The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 a pandemic. There is, however, no confirmed anti-COVID-19 therapeutic currently. In order to assist structure-based discovery efforts for repurposing drugs against this disease, we constructed knowledge-based models of SARS-CoV-2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID-19.


Assuntos
Antivirais/metabolismo , Betacoronavirus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica , SARS-CoV-2
8.
Biophys Physicobiol ; 16: 59-67, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923663

RESUMO

PolyADP-ribosylation (PARylation) is a posttranslational modification that is involved in the various cellular functions including DNA repair, genomic stability, and transcriptional regulation. PARylation is catalyzed by the poly(ADP-ribose) polymerase (PARP) family proteins, which mainly recognize damaged DNA and initiate repair processes. PARP inhibitors are expected to be novel anticancer drugs for breast and ovarian cancers having mutation in BRCA tumor suppressor genes. However the structure of intact (full-length) PARP is not yet known. We have produced and purified the full-length human PARP1 (h-PARP1), which is the major family member of PARPs, and analyzed it with single particle electron microscopy. The electron microscopic images and the reconstructed 3D density map revealed a dimeric configuration of the h-PARP1, in which two ring-shaped subunits are associated with two-fold symmetry. Although the PARP1 is hypothesized to form a dimer on damaged DNA, the quaternary structure of this protein is still controversial. The present result would provide the first structural evidence of the dimeric structure of PARP1.

9.
Sci Rep ; 8(1): 16883, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442991

RESUMO

Extant cetaceans, such as sperm whale, acquired the great ability to dive into the ocean depths during the evolution from their terrestrial ancestor that lived about 50 million years ago. Myoglobin (Mb) is highly concentrated in the myocytes of diving animals, in comparison with those of land animals, and is thought to play a crucial role in their adaptation as the molecular aqualung. Here, we resurrected ancestral whale Mbs, which are from the common ancestor between toothed and baleen whales (Basilosaurus), and from a further common quadrupedal ancestor between whale and hippopotamus (Pakicetus). The experimental and theoretical analyses demonstrated that whale Mb adopted two distinguished strategies to increase the protein concentration in vivo along the evolutionary history of deep sea adaptation; gaining precipitant tolerance in the early phase of the evolution, and increase of folding stability in the late phase.


Assuntos
Evolução Molecular , Mioglobina/genética , Baleias/metabolismo , Sequência de Aminoácidos , Animais , Extinção Biológica , Mioglobina/química , Oxigênio/metabolismo , Filogenia , Probabilidade
10.
Proteins ; 86(6): 644-653, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524263

RESUMO

The nacreous layer of pearl oysters is one of the major biominerals of commercial and industrial interest. Jacalin-related lectins, including PPL3 isoforms, are known to regulate biomineralization of the Pteria penguin pearl shell, although the molecular mechanisms are largely unknown. The PPL3 crystal structures were determined partly by utilizing microgravity environments for 3 isoforms, namely, PPL3A, PPL3B, and PPL3C. The structures revealed a tail-to-tail dimer structure established by forming a unique inter-subunit disulfide bond at C-termini. The N-terminal residues were found in pyroglutamate form, and this was partly explained by the post-translational modification of PPL3 isoforms implied from the discrepancy between amino acid and gene sequences. The complex structures with trehalose and isomaltose indicated that the novel specificity originated from the unique α-helix of PPL3 isoforms. Docking simulations of PPL3B to various calcite crystal faces suggested the edge of a ß-sheet and the carbohydrate-binding site rich in charged residues were the interface to the biomineral, and implied that the isoforms differed in calcite interactions.


Assuntos
Biomineralização , Lectinas/química , Pinctada/química , Lectinas de Plantas/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sítios de Ligação , Carbonato de Cálcio/química , Carboidratos/química , Simulação de Acoplamento Molecular , Filogenia , Ligação Proteica , Conformação Proteica em Folha beta , Isoformas de Proteínas/química
11.
Structure ; 24(11): 1960-1971, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773688

RESUMO

Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway.


Assuntos
DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Pyrococcus abyssi/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Reparo de Erro de Pareamento de DNA , DNA Arqueal/química , DNA Arqueal/metabolismo , DNA de Cadeia Simples/química , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pyrococcus abyssi/química
12.
J Mol Biol ; 425(22): 4468-78, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954514

RESUMO

The crystal structure of a novel component of the mannan biodegradation system, 4-O-ß-D-mannosyl-D-glucose phosphorylase (MGP), was determined to a 1.68-Å resolution. The structure of the enzyme revealed a unique homohexameric structure, which was formed by using two helices attached to the N-terminus and C-terminus as a tab for sticking between subunits. The structures of MGP complexes with genuine substrates, 4-O-ß-D-mannosyl-D-glucose and phosphate, and the product D-mannose-1-phosphate were also determined. The complex structures revealed that the invariant residue Asp131, which is supposed to be the general acid/base, did not exist close to the glycosidic Glc-O4 atom, which should be protonated in the catalytic reaction. Also, no solvent molecule that might mediate a proton transfer from Asp131 was observed in the substrate complex structure, suggesting that the catalytic mechanism of MGP is different from those of known disaccharide phosphorylases.


Assuntos
Fosforilases/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Glucose/química , Glucose/metabolismo , Mananas/química , Mananas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Alinhamento de Sequência , Especificidade por Substrato
13.
Biochem Biophys Res Commun ; 377(4): 1123-7, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18983981

RESUMO

Extracellular signal-regulated kinase (ERK) is a member of the MAP kinase family, and can regulate several cellular responses. The isoforms ERK1 and ERK2 have markedly similar amino acid sequences, but exhibit distinctive physiological functions. As well as ERK2, ERK1 was auto- and mono-phosphorylated at Tyr204 in the activation loop during Escherichia coli production, resulting in basal level activity, approximately 500-fold less compared with fully-active ERK1 dual-phosphorylated at Thr202 and Tyr204. Crystal structure demonstrated that the mono-phosphorylated ERK1 kinase possessed a novel conformation distinguishable from the un-phosphorylated (inactive) and the dual-phosphorylated (full-active) forms. The characteristic structural features in both the C-helix and the activation loop likely contribute to the basal activity of the mono-phosphorylated ERK1. The structural dissection of ERK1 compared to ERK2 suggests that the structural differences in the D-motif binding site and in the backside binding site are putative targets for development of selective ERK1/ERK2 inhibitors.


Assuntos
Proteína Quinase 3 Ativada por Mitógeno/química , Tirosina/química , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Ativação Enzimática , Humanos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA