Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 5): 1013-1022, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610343

RESUMO

The BL09XU beamline of SPring-8 has been reorganized into a beamline dedicated for hard X-ray photoelectron spectroscopy (HAXPES) to provide advanced capabilities with upgraded optical instruments. The beamline has two HAXPES analyzers to cover a wide range of applications. Two sets of double channel-cut crystal monochromators with the Si(220) and (311) reflections were installed to perform resonant HAXPES analyses with a total energy resolution of less than 300 meV over a wide energy range (4.9-12 keV) while achieving a fixed-exit condition. A double-crystal X-ray phase retarder using diamond crystals controls the polarization state with a high degree of polarization over 0.9 in the wide energy range 5.9-9.5 keV. Each HAXPES analyzer is equipped with a focusing mirror to provide a high-flux microbeam. The design and performance of the upgraded instruments are presented.

2.
J Synchrotron Radiat ; 29(Pt 5): 1265-1272, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073886

RESUMO

In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215 m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110 keV and 40 keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210 m away from the source, a large and uniform beam of size 14 mm (V) × 300 mm (H) [21 mm (V) × 300 mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110 keV (40 keV), which marked a 300 (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.


Assuntos
Fótons , Síncrotrons , Raios X
3.
J Synchrotron Radiat ; 26(Pt 3): 887-890, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074453

RESUMO

An arrival timing monitor for the soft X-ray free-electron laser (XFEL) beamline of SACLA BL1 has been developed. A small portion of the soft XFEL pulse is branched using the wavefront-splitting method. The branched FEL pulse is one-dimensionally focused onto a GaAs wafer to induce a transient reflectivity change. The beam branching method enables the simultaneous operation of the arrival timing diagnostics and experiments. The temporal resolution evaluated from the imaging system is ∼22 fs in full width at half-maximum, which is sufficient considering the temporal durations of the soft XFEL and the optical laser pulses.

4.
J Synchrotron Radiat ; 26(Pt 2): 585-594, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855271

RESUMO

An experimental platform using X-ray free-electron laser (XFEL) pulses with high-intensity optical laser pulses is open for early users' experiments at the SACLA XFEL facility after completion of the commissioning. The combination of the hard XFEL and the high-intensity laser provides capabilities to open new frontiers of laser-based high-energy-density science. During the commissioning phase, characterization of the XFEL and the laser at the platform has been carried out for the combinative utilization as well as the development of instruments and basic diagnostics for user experiments. An overview of the commissioning and the current capabilities of the experimental platform is presented.

5.
J Synchrotron Radiat ; 25(Pt 2): 592-603, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488941

RESUMO

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA. The package is composed of offline tools that pull stored data from cache storage, and online tools that pull data from a data-handling server in semi-real time during beam time. Users can select the most suitable tool for their purpose, and share the results through a network connection between the offline and online analysis environments.

6.
J Synchrotron Radiat ; 25(Pt 1): 68-71, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271753

RESUMO

Arrival timing diagnostics performed at a soft X-ray free-electron laser (FEL) beamline of SACLA are described. Intense soft X-ray FEL pulses with one-dimensional focusing efficiently induce transient changes of optical reflectivity on the surface of GaAs. The arrival timing between soft X-ray FEL and optical laser pulses was successfully measured as a spatial position of the reflectivity change. The temporal resolution evaluated from the imaging system reaches ∼10 fs. This method requires only a small portion of the incident pulse energy, which enables the simultaneous operation of the arrival timing diagnostics and experiments by introducing a wavefront-splitting scheme.

7.
J Synchrotron Radiat ; 25(Pt 1): 282-288, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271777

RESUMO

The design and performance of a soft X-ray free-electron laser (FEL) beamline of the SPring-8 Compact free-electron LAser (SACLA) are described. The SPring-8 Compact SASE Source test accelerator, a prototype machine of SACLA, was relocated to the SACLA undulator hall for dedicated use for the soft X-ray FEL beamline. Since the accelerator is operated independently of the SACLA main linac that drives the two hard X-ray beamlines, it is possible to produce both soft and hard X-ray FEL simultaneously. The FEL pulse energy reached 110 µJ at a wavelength of 12.4 nm (i.e. photon energy of 100 eV) with an electron beam energy of 780 MeV.

8.
Sci Rep ; 6: 38654, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934891

RESUMO

We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å "in average" relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase.

9.
Struct Dyn ; 3(3): 034301, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26958586

RESUMO

We report a method for achieving advanced photon diagnostics of x-ray free-electron lasers (XFELs) under a quasi-noninvasive condition by using a beam-splitting scheme. Here, we used a transmission grating to generate multiple branches of x-ray beams. One of the two primary diffracted branches (+1st-order) is utilized for spectral measurement in a dispersive scheme, while the other (-1st-order) is dedicated for arrival timing diagnostics between the XFEL and the optical laser pulses. The transmitted x-ray beam (0th-order) is guided to an experimental station. To confirm the validity of this timing-monitoring scheme, we measured the correlation between the arrival timings of the -1st and 0th branches. The observed error was as small as 7.0 fs in root-mean-square. Our result showed the applicability of the beam branching scheme to advanced photon diagnostics, which will further enhance experimental capabilities of XFEL.

10.
Sci Rep ; 5: 14065, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369428

RESUMO

We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures.

11.
J Phys Chem A ; 119(11): 2644-50, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25357154

RESUMO

Laser-induced near-infrared (NIR) emission spectra of neutral bismuth timer, Bi3, embedded in solid neon matrixes at 3 K were recorded in a range 870-1670 nm. Using photoexcitation with low energy photons at 1064 nm, two emission band systems were newly identified by their origin bands at T0 = 6600 and 8470 cm⁻¹. Accordingly, spectral assignment for three NIR emission band systems reported recently was partly revised for the one with its origin band at T0 = 7755 cm⁻¹ and reconfirmed for the others at T0 = 9625 and 11,395 cm⁻¹. Energy splitting by spin-orbit coupling between the pair of electronic energy levels in the ground state of bismuth trimer, Bi3, both having a totally symmetric vibrational mode of frequency at ω(e)" = 150 cm⁻¹, was determined to be 1870 ± 1.5 cm⁻¹. Transitions from the pair of electronically excited states, locating at T0 = 8470 and 9625 cm⁻¹ above the ground state and separated by spin­orbit coupling of 1155 cm⁻¹, have relatively long decay constants of τ ∼0.2 and ∼0.1 ms, respectively.

12.
J Chem Phys ; 138(21): 214309, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758373

RESUMO

We studied diffusion of hydrogen fluoride (HF) in solid parahydrogen (pH2) around 4 K. Diffusion rates were determined from time dependence of FT-IR spectra of HF monomers. The absorption of HF monomers shows temporal decay due to dimerization reaction via diffusion. It was found that the rates are affected by the sample temperature, the initial HF concentration, and annealing of samples. The observed non-Arrhenius-type temperature dependence suggests that the diffusion is dominated by a quantum tunneling process, that is, "quantum diffusion." Deceleration of the diffusion in condensed samples and acceleration in annealed samples were also observed. These results can be attributed to the fact that lower periodicity of samples due to impurities or defects suppresses the quantum tunneling. It seems to be difficult to explain the observed dependences by three possible diffusion mechanisms, exchange of chemical bonds, direct cyclic exchange, and exchange with mobile vacancy. Therefore, we propose a hypothetical mechanism by exchange of vacancies originating from quantum effect.


Assuntos
Ácido Fluorídrico/química , Hidrogênio/química , Difusão , Temperatura
13.
J Chem Phys ; 138(2): 024507, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320704

RESUMO

The coherence decay of the v = 2 vibrational state (vibrons) of solid parahydrogen was measured via time-resolved coherent anti-Stokes Raman spectroscopy. We found that the decay curve has a non-exponential time profile in the time scale of 200 ns at a low temperature below 5 K and a low orthohydrogen impurity concentration (~0.01%). This behavior, as also observed in the case of the v = 1 vibrons, represents a signature of band structure of the v = 2 state in the solid phase. The maximum coherence decay time of 50 ns in an exponential part was achieved, which shows excellence of the v = 2 state for coherent processes. We also found that finite temperatures, orthohydrogen impurities, and other structural inhomogeneity accelerate the decay, hiding the non-exponential feature of the vibron band.


Assuntos
Hidrogênio/química , Análise Espectral Raman/métodos , Fônons , Temperatura
14.
J Phys Chem A ; 115(50): 14254-61, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22047136

RESUMO

We report measurements of FT-IR absorption spectroscopy of HF, DF, and their clusters in solid parahydrogen (pH(2)). The observed spectra contain many absorption lines which were assigned to HF monomers, HF polymers, and clusters with other species, such as N(2), O(2), orthohydrogen (oH(2)), etc. The rotational constants of HF and DF monomers were determined from the cooperative transitions of the vibration of solid pH(2) and the rotation of HF and DF. Small reduction of the rotational constants indicates that HF and DF are nearly free rotors in solid pH(2). Time dependence of the spectra suggests that HF and DF monomers migrate in solid pH(2) and form larger polymers, probably via tunneling reactions through high energy barriers on inserting another monomer to the polymers. The line width of HF monomers in solid pH(2) was found to be 4 cm(-1), which is larger than that of other hydrogen halides in solid pH(2). This broad line width is explained by rapid rotational relaxation due to the accidental coincidence between the rotational energy of HF and the phonon energy with maximum density of states of solid pH(2) and the rotational-translational coupling in a trapping site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA