Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675624

RESUMO

We prepared network polysaccharide nanoscopic hydrogels by crosslinking water-soluble chitosan (WSCS) with a carboxylate-terminated maltooligosaccharide crosslinker via condensation. In this study, the enzymatic elongation of amylose chains on chitosan-based network polysaccharides by glucan phosphorylase (GP) catalysis was performed to obtain assembly materials. Maltoheptaose (Glc7) primers for GP-catalyzed enzymatic polymerization were first introduced into WSCS by reductive amination. Crosslinking of the product with the above-mentioned crosslinker by condensation was then performed to produce Glc7-modified network polysaccharides. The GP-catalyzed enzymatic polymerization of the α-d-glucose 1-phosphate monomer from the Glc7 primers on the network polysaccharides was conducted, where the elongated amylose chains formed double helices. Enzymatic disintegration of the resulting network polysaccharide assembly successfully occurred by α-amylase-catalyzed hydrolysis of the double helical amyloses. The encapsulation and release of a fluorescent dye, Rhodamine B, using the CS-based network polysaccharides were also achieved by means of the above two enzymatic approaches.


Assuntos
Quitosana , Corantes Fluorescentes , Glucanos , Polissacarídeos , Quitosana/química , Corantes Fluorescentes/química , Polissacarídeos/química , Rodaminas/química , Hidrogéis/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Hidrólise , Amilose/química , Polimerização , Oligossacarídeos/química , Glucofosfatos/química , Glucofosfatos/metabolismo
2.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500476

RESUMO

In this study, we developed a method to fabricate chitosan-based network polysaccharides via the condensation between amino groups in water-soluble chitosan (WSCS) and a carboxylate-terminated maltooligosaccharide crosslinker. We previously reported on the fabrication of network-polysaccharide-based macroscopic hydrogels via the chemical crosslinking of water-soluble chitin (WSCh) with the crosslinker. Because the molecular weight of the WSCS was much smaller than that of the WSCh, in the present investigation, the chemical crosslinking of the WSCS with the crosslinker was observed at the nanoscale upon the condensation between amino and carboxylate groups in the presence of a condensing agent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, and N-hydroxysuccinimide, affording nano-sized chitosan-based network polysaccharides. The occurrence of the crosslinking via the formation of amido linkages was supported by the IR analysis and 1H NMR measurements after the dissolution via acid hydrolysis in DCl/D2O. The products formed nanogels, whose sizes depended on the amino/carboxylate feed ratio. The nanoscale morphology and size of the products were evaluated via scanning electron microscopy, dynamic light scattering analyses, and transition electron microscopy. In the present study, we successfully developed the method to fabricate nanogel materials based on network polysaccharide structures, which can practically be applied as new polysaccharide-based 3D bionanomaterials.


Assuntos
Quitosana , Quitosana/química , Polissacarídeos/química , Hidrogéis/química , Peso Molecular , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA