Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(37): e2401531121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226364

RESUMO

Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.


Assuntos
Neurônios Motores , Proteínas de Ligação a RNA , Medula Espinal , Transcriptoma , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neurônios Motores/metabolismo , Camundongos , Medula Espinal/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Splicing de RNA , Camundongos Knockout
2.
Neurochem Int ; 165: 105517, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913980

RESUMO

NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.


Assuntos
Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
3.
Mol Brain ; 14(1): 173, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872607

RESUMO

Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = - 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.


Assuntos
Técnicas Biossensoriais , Dopamina , Animais , Dopamina/metabolismo , Células HeLa , Humanos , Neurônios/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia
4.
PLoS One ; 15(2): e0229288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078638

RESUMO

The GluD1 gene is associated with susceptibility for schizophrenia, autism, depression, and bipolar disorder. However, the function of GluD1 and how it is involved in these conditions remain elusive. In this study, we generated a Grid1 gene-knockout (GluD1-KO) mouse line with a pure C57BL/6N genetic background and performed several behavioral analyses. Compared to a control group, GluD1-KO mice showed no significant anxiety-related behavioral differences, evaluated using behavior in an open field, elevated plus maze, a light-dark transition test, the resident-intruder test of aggression and sensorimotor gating evaluated by the prepulse inhibition test. However, GluD1-KO mice showed (1) higher locomotor activity in the open field, (2) decreased sociability and social novelty preference in the three-chambered social interaction test, (3) impaired memory in contextual, but not cued fear conditioning tests, and (4) enhanced depressive-like behavior in a forced swim test. Pharmacological studies revealed that enhanced depressive-like behavior in GluD1-KO mice was restored by the serotonin reuptake inhibitors imipramine and fluoxetine, but not the norepinephrine transporter inhibitor desipramine. In addition, biochemical analysis revealed no significant difference in protein expression levels, such as other glutamate receptors in the synaptosome and postsynaptic densities prepared from the frontal cortex and the hippocampus. These results suggest that GluD1 plays critical roles in fear memory, sociability, and depressive-like behavior.


Assuntos
Ansiedade/patologia , Depressão/patologia , Medo , Glutamato Desidrogenase/fisiologia , Relações Interpessoais , Transtornos da Memória/patologia , Transtornos do Comportamento Social/patologia , Animais , Ansiedade/etiologia , Comportamento Animal , Depressão/etiologia , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Transtornos do Comportamento Social/etiologia
5.
J Comp Neurol ; 528(6): 1003-1027, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625608

RESUMO

In the cerebellum, GluD2 is exclusively expressed in Purkinje cells, where it regulates synapse formation and regeneration, synaptic plasticity, and motor learning. Delayed cognitive development in humans with GluD2 gene mutations suggests extracerebellar functions of GluD2. However, extracerebellar expression of GluD2 and its relationship with that of GluD1 are poorly understood. GluD2 mRNA and protein were widely detected, with relatively high levels observed in the olfactory glomerular layer, medial prefrontal cortex, cingulate cortex, retrosplenial granular cortex, olfactory tubercle, subiculum, striatum, lateral septum, anterodorsal thalamic nucleus, and arcuate hypothalamic nucleus. These regions were also enriched for GluD1, and many individual neurons coexpressed the two GluDs. In the retrosplenial granular cortex, GluD1 and GluD2 were selectively expressed at PSD-95-expressing glutamatergic synapses, and their coexpression on the same synapses was shown by SDS-digested freeze-fracture replica labeling. Biochemically, GluD1 and GluD2 formed coimmunoprecipitable complex formation in HEK293T cells and in the cerebral cortex and hippocampus. We further estimated the relative protein amount by quantitative immunoblotting using GluA2/GluD2 and GluA2/GluD1 chimeric proteins as standards for titration of GluD1 and GluD2 antibodies. Intriguingly, the relative amount of GluD2 was almost comparable to that of GluD1 in the postsynaptic density fraction prepared from the cerebral cortex and hippocampus. In contrast, GluD2 was overwhelmingly predominant in the cerebellum. Thus, we have determined the relative extracerebellar expression of GluD1 and GluD2 at regional, neuronal, and synaptic levels. These data provide a molecular-anatomical basis for possible competitive and cooperative interactions of GluD family members at synapses in various brain regions.


Assuntos
Encéfalo/metabolismo , Glutamato Desidrogenase/metabolismo , Receptores de Glutamato/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 34(22): 7412-24, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872547

RESUMO

Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF-interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.


Assuntos
Química Encefálica/fisiologia , Cerebelo/fisiologia , Regulação da Expressão Gênica/fisiologia , Interneurônios/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Receptores de Glutamato/biossíntese , Sinapses/fisiologia , Animais , Diferenciação Celular/fisiologia , Cerebelo/ultraestrutura , Glutamato Desidrogenase , Células HEK293 , Humanos , Interneurônios/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/ultraestrutura , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Receptores de Glutamato/genética , Receptores de Glutamato/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA