Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 154(1): 18-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081680

RESUMO

Crohn's disease, a chronic and recurrent gastrointestinal disease, frequently causes intestinal fibrosis. Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is activated by reactive oxygen species. This study investigated the role of TRPM2 in acute colitis and chronic colitis-associated fibrosis progression. Acute colitis and chronic colitis-associated fibrosis were induced in TRPM2-deficient (TRPM2KO) and wild-type (WT) mice through single and repeated intrarectal injections of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Bone marrow-derived macrophages (BMDMs) from WT and TRPM2KO mice were stimulated using H2O2. In WT mice, a single TNBS injection induced acute colitis with upregulated inflammatory cytokines/chemokines and Th1/Th17-related cytokines, while repeated TNBS injections induced chronic colitis-associated fibrosis with upregulation of fibrogenic factors and Th2-related cytokines. Acute colitis and chronic colitis-associated fibrosis with cytokines/chemokine upregulation and fibrogenic factors were considerably suppressed in TRPM2KO mice. Treating BMDMs with H2O2 increased cytokine/chemokine expression and JNK, ERK, and p38 phosphorylation; however, these responses were significantly less in TRPM2KO than in WT mice. These findings suggest that TRPM2 contributes to acute colitis progression via Th1/Th17-mediated immune responses. Furthermore, TRPM2 may be directly involved in colitis-associated fibrosis induction, likely due to the regulation of Th2/TGF-ß1-mediated fibrogenesis in addition to a consequence of acute colitis progression.


Assuntos
Colite , Canais de Cátion TRPM , Camundongos , Animais , Colo/metabolismo , Canais de Cátion TRPM/genética , Peróxido de Hidrogênio/metabolismo , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ácido Trinitrobenzenossulfônico/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Quimiocinas/efeitos adversos , Quimiocinas/metabolismo , Fibrose , Modelos Animais de Doenças
2.
J Pharmacol Sci ; 146(3): 125-135, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34030795

RESUMO

Gastroesophageal reflux disease (GERD) is a common gastrointestinal disorder. In the present study, we investigated TRP vanilloid subfamily member 2 (TRPV2) expression in lower oesophageal sphincter (LES) and its involvement in acid reflux oesophagitis in rats. Expression of TRPV2 and nerve growth factor mRNAs was significantly enhanced in LES of rats with reflux oesophagitis compared with normal rats. TRPV2 was mainly expressed in inhibitory motor neurons, and partly in intrinsic and extrinsic primary afferent neurons, and macrophages in LES of normal and reflux oesophagitis rats. Number of TRPV2-immunopositive nerve fibres was significantly increased, but that of nNOS-, CGRP-, and PGP9.5-nerve fibres was not changed in reflux oesophagitis compared with normal group. Probenecid produced nitric oxide production and relaxation in LES and this response was significantly enhanced in oesophagitis compared with normal group. Probenecid-induced relaxant effect was blocked by a TRPV2 inhibitor, tranilast, and a NOS inhibitor, NG-nitro-l-arginine methyl ester, in reflux oesophagitis rats. Oral administration of tranilast significantly improved body weight loss, oesophageal lesions, and epithelial thickness in oesophagitis model. These results suggest that up-regulation of TRPV2 in inhibitory motor neurons is involved in LES relaxation in oesophagitis model. TRPV2 inhibition might be beneficial for treatment of GERD.


Assuntos
Esfíncter Esofágico Inferior/metabolismo , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/genética , Expressão Gênica/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Animais , Modelos Animais de Doenças , Esfíncter Esofágico Inferior/efeitos dos fármacos , Masculino , Relaxamento Muscular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Probenecid/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico
3.
Eur J Pharmacol ; 867: 172853, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836532

RESUMO

Ca2+-permeable ion channels, such as transient receptor channels, are one of the potential therapeutic targets in cancer. Transient receptor potential vanilloid subtype 4 (TRPV4) is a nonselective cation channel associated with cancer progression. This study investigates the roles of TRPV4 in the pathogenesis of colitis-associated cancer (CAC) in mice. The role of TRPV4 was examined in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced murine CAC model. The formation of colon tumours induced by AOM/DSS treatment was significantly attenuated in TRPV4-deficient mice (TRPV4KO). TRPV4 was co-localised with markers of angiogenesis and macrophages. AOM/DSS treatment upregulated the expression of CD105, vascular endothelial growth factor receptor 2, and TRPV4 in wildtype, but the upregulation of CD105 was significantly attenuated in TRPV4KO. Bone marrow chimera experiments indicated that TRPV4, expressed in both vascular endothelial cells and bone marrow-derived macrophages, played a significant role in colitis-associated tumorigenesis. There was no significant difference in the population of hematopoietic cells, neutrophils, and monocytes between untreated and AOM/DSS-treated WT and TRPV4KO on flow cytometric analysis. TRPV4 activation by a selective agonist induced TNF-α and CXCL2 release in macrophages. Furthermore, TRPV4 activation enhanced the proliferation of human umbilical vein endothelial cells. These results suggest that TRPV4 expressed in neovascular endothelial cells and bone marrow-derived macrophages contributes to the progression of CAC in mice.


Assuntos
Carcinogênese/patologia , Colite/patologia , Neoplasias do Colo/patologia , Neoplasias Experimentais/patologia , Canais de Cátion TRPV/metabolismo , Animais , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/toxicidade , Progressão da Doença , Células Endoteliais da Veia Umbilical Humana , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA