Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cancer Gene Ther ; 30(7): 973-984, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36932197

RESUMO

The tumor-elicited inflammation is closely related to tumor microenvironment during tumor progression. S100A8, an endogenous ligand of Toll-like receptor 4 (TLR4), is known as a key molecule in the tumor microenvironment and premetastatic niche formation. We firstly generated a novel multivalent S100A8 competitive inhibitory peptide (divalent peptide3A5) against TLR4/MD-2, using the alanine scanning. Divalent peptide3A5 suppressed S100A8-mediated interleukin-8 and vascular endothelial growth factor production in human colorectal tumor SW480 cells. Using SW480-transplanted xenograft models, divalent peptide3A5 suppressed tumor progression in a dose-dependent manner. We demonstrated that combination therapy with divalent peptide3A5 and bevacizumab synergistically suppressed tumor growth in SW480 xenograft models. Using syngeneic mouse models, we found that divalent peptide3A5 improved the efficacy of anti-programmed death (PD)1 antibody, and lung metastasis. In addition, by using multivalent peptide library screening based on peptide3A5, we then isolated two more candidates; divalent ILVIK, and tetravalent ILVIK. Of note, multivalent ILVIK, but not monovalent ILVIK showed competitive inhibitory activity against TLR4/MD-2 complex, and anti-tumoral activity in SW480 xenograft models. As most tumor cells including SW480 cells also express TLR4, S100A8 inhibitory peptides would target both the tumor microenvironment and tumor cells. Thus, multivalent S100A8 inhibitory peptides would provide new pharmaceutical options for aggressive cancers.


Assuntos
Calgranulina B , Receptor 4 Toll-Like , Animais , Camundongos , Humanos , Calgranulina B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Calgranulina A/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
2.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511780

RESUMO

Collapsin response mediator proteins (CRMPs) are key for brain development and function. Here, we link CRMP1 to a neurodevelopmental disorder. We report heterozygous de novo variants in the CRMP1 gene in three unrelated individuals with muscular hypotonia, intellectual disability, and/or autism spectrum disorder. Based on in silico analysis these variants are predicted to affect the CRMP1 structure. We further analyzed the effect of the variants on the protein structure/levels and cellular processes. We showed that the human CRMP1 variants impact the oligomerization of CRMP1 proteins. Moreover, overexpression of the CRMP1 variants affect neurite outgrowth of murine cortical neurons. While altered CRMP1 levels have been reported in psychiatric diseases, genetic variants in CRMP1 gene have never been linked to human disease. We report for the first-time variants in the CRMP1 gene and emphasize its key role in brain development and function by linking directly to a human neurodevelopmental disease.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Hipotonia Muscular/genética
3.
Front Neurol ; 13: 994676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237616

RESUMO

In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a "dying back" manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A-CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.

4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142564

RESUMO

Emerging evidence suggests that neural activity contributes to tumor initiation and its acquisition of metastatic properties. More specifically, it has been reported that the sympathetic nervous system regulates tumor angiogenesis, tumor growth, and metastasis. The function of the sympathetic nervous system in primary tumors has been gradually elucidated. However, its functions in pre-metastatic environments and/or the preparation of metastatic environments far from the primary sites are still unknown. To investigate the role of the sympathetic nervous system in pre-metastatic environments, we performed chemical sympathectomy using 6-OHDA in mice and observed a decrease in lung metastasis by attenuating the recruitment of myeloid-derived suppressor cells. Furthermore, we note that neuro-immune cell interactions could be observed in tumor-bearing mouse lungs in conjunction with the decreased expression of Sema3A. These data indicate that the sympathetic nervous system contributes to the preparation of pre-metastatic microenvironments in the lungs, which are mediated by neuro-immune cell interactions.


Assuntos
Neoplasias Pulmonares , Semaforina-3A , Animais , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica/patologia , Oxidopamina , Sistema Nervoso Simpático , Microambiente Tumoral
5.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35523582

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522→Ala) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
6.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063136

RESUMO

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Monocrotalina/efeitos adversos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/genética , Sístole , Função Ventricular Direita/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Direita/etiologia , Técnicas In Vitro , Masculino , Artéria Pulmonar/fisiologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Disfunção Ventricular Direita/etiologia
7.
Sci Rep ; 12(1): 1500, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087105

RESUMO

3D cultured cell aggregates, including spheroids, reflect the gene expression patterns of living tissues/organs. Mass preparation of spheroids enables high-throughput drug screening (HTS). However, conventional optical imaging of spheroids makes it difficult to obtain sufficient resolution of individual living cells in the thick cellular stack. Rapid and accurate assessment of cellular responses in spheroids is required for effective drug screening. Here, we show that negative contrast imaging (NCI) of spheroids overcomes this issue. Hydrophilic fluorescent dye added into the culture medium rapidly diffused into the intercellular space of living spheroids within a few minutes. Confocal microscopy showed the NCI of individual cells as dark and detailed contours clearly separated with fluorescence signals in the intercellular space. NCI enables the visualization of the alteration of cell morphology after anti-tumor drug application to living spheroids and the measurement of the fluorescent dye diffusion rate without any complicated pretreatments. Using this system, we found that the antitumor drug doxorubicin reduced the intercellular space of spheroids consisting of the human hepatocyte carcinoma cell line HepG2, through the activation of TGF-ß signaling and upregulation of ECM protein expression, implicating a drug resistance mechanism. Collectively, the combination of NCI of spheroids and HTS may enhance the efficiency of drug discovery.


Assuntos
Esferoides Celulares
8.
J Cardiothorac Vasc Anesth ; 36(3): 855-861, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34253445

RESUMO

OBJECTIVES: Blood-processing techniques and preservation conditions cause storage lesions, possibly leading to adverse outcomes after transfusion. The authors investigated the metabolic changes and deformability of red blood cells (RBCs) during storage and determined the effect of storage lesions on circulating RBCs during cardiac surgery. DESIGN: Prospective study. SETTING: Tertiary care center affiliated with a university hospital. PARTICIPANTS: Adults who underwent elective cardiac surgery requiring cardiopulmonary bypass. INTERVENTIONS: The authors collected aliquots of autologous and irradiated allogeneic RBCs and blood samples from seven patients who received autologous whole blood and nine patients who received irradiated allogeneic RBCs before incision (baseline), at the start and end of cardiopulmonary bypass, and at completion of surgery. MEASUREMENTS AND MAIN RESULTS: The authors analyzed RBC deformability, erythrocyte indices, and density distribution to evaluate blood banking-induced alterations of autologous and allogeneic RBCs and changes in circulating RBCs in recipients, after blood transfusion. Time-dependent biochemical changes and significant decreases in deformability during storage occurred in both groups; however, homologous RBCs had significantly lower deformability than autologous RBCs. Trends in mean corpuscular volume and mean corpuscular hemoglobin concentration differed in both groups. In the homologous transfusion group, during cardiac surgery, RBC deformability, mean corpuscular volume, and mean corpuscular hemoglobin concentration showed significant changes compared with baseline values, and a greater number of denser subpopulations was observed at surgery completion. CONCLUSIONS: Blood-processing techniques contribute to storage lesions, suggesting that transfusion of autologous whole blood, rather than allogeneic RBCs, could maintain the ability of circulating RBCs to deform and lead to potentially better transfusion outcomes.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Transplante de Células-Tronco Hematopoéticas , Preservação de Sangue/efeitos adversos , Preservação de Sangue/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Deformação Eritrocítica , Eritrócitos , Humanos , Estudos Prospectivos
9.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330827

RESUMO

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/diagnóstico , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética
10.
Eur J Neurosci ; 53(10): 3279-3293, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772906

RESUMO

The semaphorin family is a well-characterized family of secreted or membrane-bound proteins that are involved in activity-independent neurodevelopmental processes, such as axon guidance, cell migration, and immune functions. Although semaphorins have recently been demonstrated to regulate activity-dependent synaptic scaling, their roles in Hebbian synaptic plasticity as well as learning and memory remain poorly understood. Here, using a rodent model, we found that an inhibitory avoidance task, a hippocampus-dependent contextual learning paradigm, increased secretion of semaphorin 3A in the hippocampus. Furthermore, the secreted semaphorin 3A in the hippocampus mediated contextual memory formation likely by driving AMPA receptors into hippocampal synapses via the neuropilin1-plexin A4-semaphorin receptor complex. This signaling process involves alteration of the phosphorylation status of collapsin response mediator protein 2, which has been characterized as a downstream molecule in semaphorin signaling. These findings implicate semaphorin family as a regulator of Hebbian synaptic plasticity and learning.


Assuntos
Semaforina-3A , Semaforinas , Aprendizagem , Plasticidade Neuronal , Sinapses
11.
J Neurochem ; 157(4): 1207-1221, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449368

RESUMO

Collapsin response mediator proteins (CRMPs) have been identified as mediating proteins of repulsive axon guidance cue Semaphorin-3A (Sema3A). Phosphorylation of CRMPs plays a crucial role in the Sema3A signaling cascade. It has been shown that Fyn phosphorylates CRMP1 at Tyrosine 504 residue (Tyr504); however, the physiological role of this phosphorylation has not been examined. We found that CRMP1 was the most strongly phosphorylated by Fyn among the five members of CRMPs. We confirmed Tyr504 phosphorylation of CRMP1 by Fyn. Immunocytochemistry of mouse dorsal root ganglion (DRG) neurons showed that phosphotyrosine signal in the growth cones was transiently increased in the growth cones upon Sema3A stimulation. Tyr504-phosphorylated CRMP1 also tended to increase after Sema3A simulation. Ectopic expression of a single amino acid mutant of CRMP1 replacing Tyr504 with phenylalanine (CRMP1-Tyr504Phe) suppressed Sema3A-induced growth cone collapse response in chick DRG neurons. CRMP1-Tyr504Phe expression in mouse hippocampal neurons also suppressed Sema3A but not Sema3F-induced growth cone collapse response. Immunohistochemistry showed that Tyr504-phosphorylated CRMP1 was present in the cell bodies and in the dendritic processes of mouse cortical neurons. CRMP1-Tyr504Phe suppressed Sema3A-induced dendritic growth of primary cultured mouse cortical neurons as well as the dendritic development of cortical pyramidal neurons in vivo. Fyn± ; Crmp1± double heterozygous mutant mice exhibited poor development of cortical layer V basal dendrites, which was the similar phenotype observed in Sema3a-/- , Fyn-/- , and Crmp1-/- mice. These findings demonstrate that Tyr504 phosphorylation of CRMP1 by Fyn is an essential step of Sema3A-regulated dendritic development of cortical pyramidal neurons. (247 words).


Assuntos
Dendritos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Fosfoproteínas/metabolismo , Semaforina-3A/metabolismo , Animais , Córtex Cerebral/metabolismo , Embrião de Galinha , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Tirosina/metabolismo
12.
Neurosci Res ; 170: 370-375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32896531

RESUMO

Nicotine exerts its reinforcing actions by activating nicotinic acetylcholine receptors (nAChRs), but the detailed mechanisms remain unclear. Nicotine releases 3, 4-dihydroxyphenylalanine (DOPA), a neurotransmitter candidate in the central nervous system. Here, we investigated the distribution of GPR143, a receptor of DOPA, and nAChR subunits in the nigrostriatal and mesolimbic regions. We found GPR143 mRNA-positive cells in the striatum and nucleus accumbens. Some of them were surrounded by tyrosine hydroxylase (TH)-immunoreactive fibers. There were some GPR143 mRNA-positive cells coexpressing TH, and nAChR subunit α4 or α7 in the substantia nigra and ventral tegmental area. These findings suggest that DOPA-GPR143 signaling may be involved in the nicotine action in the nigrostriatal and mesolimbic dopaminergic systems.


Assuntos
Receptores Nicotínicos , Di-Hidroxifenilalanina , Nicotina/farmacologia , RNA Mensageiro , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo
13.
J Cell Mol Med ; 24(23): 13991-14000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103382

RESUMO

Mature human erythrocytes circulate in blood for approximately 120 days, and senescent erythrocytes are removed by splenic macrophages. During this process, the cell membranes of senescent erythrocytes express phosphatidylserine, which is recognized as a signal for phagocytosis by macrophages. However, the mechanisms underlying phosphatidylserine exposure in senescent erythrocytes remain unclear. To clarify these mechanisms, we isolated senescent erythrocytes using density gradient centrifugation and applied fluorescence-labelled lipids to investigate the flippase and scramblase activities. Senescent erythrocytes showed a decrease in flippase activity but not scramblase activity. Intracellular ATP and K+ , the known influential factors on flippase activity, were altered in senescent erythrocytes. Furthermore, quantification by immunoblotting showed that the main flippase molecule in erythrocytes, ATP11C, was partially lost in the senescent cells. Collectively, these results suggest that multiple factors, including altered intracellular substances and reduced ATP11C levels, contribute to decreased flippase activity in senescent erythrocytes in turn to, present phosphatidylserine on their cell membrane. The present study may enable the identification of novel therapeutic approaches for anaemic states, such as those in inflammatory diseases, rheumatoid arthritis, or renal anaemia, resulting from the abnormally shortened lifespan of erythrocytes.


Assuntos
Adenosina Trifosfatases/metabolismo , Eritrócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilserinas/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Cálcio/metabolismo , Micropartículas Derivadas de Células/metabolismo , Senescência Celular/genética , Ativação Enzimática , Membrana Eritrocítica/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Potássio/metabolismo
14.
Front Cell Neurosci ; 14: 188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655376

RESUMO

Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.

15.
Am J Hum Genet ; 106(4): 549-558, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32169168

RESUMO

De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.


Assuntos
Exoma/genética , Éxons/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Epilepsias Mioclônicas Progressivas/genética , Semaforinas/genética , Adolescente , Adulto , Alelos , Animais , Feminino , Heterozigoto , Humanos , Masculino , Degradação do RNAm Mediada por Códon sem Sentido/genética , Convulsões/genética , Adulto Jovem , Peixe-Zebra/genética
16.
Transl Oncol ; 13(3): 100746, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32105991

RESUMO

Pancreatic intraepithelial neoplasia (PanIN), the most common premalignant lesion of the pancreas, is a histologically well-defined precursor to invasive pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms underlying the progression of PanINs have not been fully elucidated. Previously, we demonstrated that the expression of collapsin response mediator protein 4 (CRMP4) in PDAC was associated with poor prognosis. The expression of CRMP4 was also augmented in a pancreatitis mouse model. However, the role of CRMP4 in the progression of PanIN lesions remains uncertain. In the present study, we examined the relationship between CRMP4 expression and progression of PanIN lesions using genetically engineered mouse models. PanIN lesions were induced by peritoneal injection of the cholecystokinin analog caerulein in LSL-KRASG12D; Pdx1-Cre (KC-Crmp4 wild-type, WT) mice and LSL-KRASG12D; Pdx1-Cre; Crmp4-/- (KC-Crmp4 knockout, KO) mice. We analyzed pancreatic tissue sections from these mice and evaluated PanIN grade by hematoxylin and eosin staining. CRMP4 expression was examined and the cellular components assessed by immunohistochemistry using antibodies against CRMP4, CD3, and α-smooth muscle actin (SMA). The incidence of high-grade PanIN in KC-Crmp4 WT mice was higher than that in KC-Crmp4 KO animals. CRMP4 was expressed not only in epithelial cells but also in αSMA-positive cells in stromal areas of PanIN lesions. The CRMP4 expression in stromal areas correlated with PanIN grade in WT mice. These results suggested that the expression of CRMP4 in stromal cells may underlie the incidence or progression of PanIN.

17.
Neurobiol Dis ; 132: 104603, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494281

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by memory loss and neurotoxic amyloid beta (Aß) plaques accumulation. Numerous pharmacological interventions targeting Aß plaques accumulation have failed to alleviate AD. Also, the pathological alterations in AD start years before the onset of clinical symptoms. To identify proteins at play during the early stage of AD, we conducted proteomic analysis of the hippocampus of young AppNL-F mice model of AD at the preclinical phase of the disease. This was followed by interactome ranking of the proteome into hubs that were further validated in vivo using immunoblot analysis. We also performed double-immunolabeling of these hub proteins and Aß to quantify colocalization. Behavioral analysis revealed no significant difference in memory performance between 8-month-old AppNL-F and control mice. The upregulation and downregulation of several proteins were observed in the AppNL-F mice compared to control. These proteins corresponded to pathways and processes related to Aß clearance, inflammatory-immune response, transport, mitochondrial metabolism, and glial cell proliferation. Interactome analysis revealed several proteins including DLGP5, DDX49, CCDC85A, ADCY6, HEPACAM, HCN3, PPT1 and TNPO1 as essential proteins in the AppNL-F interactome. Validation by immunoblot confirmed the over-expression of these proteins except HCN3 in the early-stage AD mice hippocampus. Immunolabeling revealed a significant increase in ADCY6/Aß and HEPACAM/Aß colocalized puncta in AppNL-F mice compared to WT. These data suggest that these proteins may be involved in the early stage of AD. Our work suggests new targets and biomarkers for AD diagnosis and therapeutic intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Biochem Biophys Res Commun ; 516(3): 705-712, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31253392

RESUMO

Distribution of phosphatidylserine (PS) in the erythrocyte membrane is essential for its activity. Flippase transports phospholipids from the outer to the inner leaflet of the lipid bilayer and maintains asymmetric distribution of phospholipids in the plasma membrane. ATP11C, a flippase, catalyzes PS flipping at the plasma membrane in association with cell cycle control protein 50A (CDC50A). ATP11C T418 N mutation causes 90% decrease in erythrocyte PS-flippase activity. However, the mechanism of the activity reduction remains unknown. To study the endogenous expression of ATP11C in erythrocytes, we produced a monoclonal antibody against human ATP11C. Immunoblotting analyses with this antibody revealed the absence of ATP11C in erythrocyte membranes derived from a patient with the T418 N mutation. Transiently expressed ATP11C wild-type in cultured cells localized in the cell membranes in the presence of CDC50A. Contrastingly, ATP11C T418 N mutants stacked at the endoplasmic reticulum (ER) even in the presence of CDC50A, suggesting improper intracellular trafficking. Expression of the T418 N mutant in cultured cells was lower than that in the wild-type. However, reduced expression of the T418 N mutant was partially restored by treatment with proteasome inhibitors, suggesting ER-associated degradation of the mutant protein. Cells expressing T418 N did not show flippase activity at the plasma membrane. These data show that the loss of PS-flippase activity in erythrocytes carrying ATP11C T418 N mutation is due to impaired enzymatic activity, improper membrane trafficking, and increased proteasome degradation.


Assuntos
Adenosina Trifosfatases/genética , Anemia Hemolítica Congênita/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto , Adenosina Trifosfatases/metabolismo , Anemia Hemolítica Congênita/metabolismo , Animais , Transporte Biológico/genética , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Feminino , Células HeLa , Humanos , Immunoblotting , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo
19.
J Cardiothorac Vasc Anesth ; 33(11): 2960-2967, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31072700

RESUMO

OBJECTIVES: During cardiac surgery, circulating red blood cells (RBCs) are at risk of exposure to environmental factors during extracorporeal circulation and transfusion of stored RBCs. For this study, the authors observed morphological differences, deformability, density distribution, and erythrocyte indices of RBCs during cardiac surgery with cardiopulmonary bypass (CPB). DESIGN: Prospective study. SETTING: Tertiary care center affiliated with a university hospital. PARTICIPANTS: Adults who underwent elective cardiac surgery requiring CPB. INTERVENTIONS: Blood samples were obtained from 13 patients before incision (baseline), at initiation of CPB, after separation from CPB, and at completion of surgery. MEASUREMENTS AND MAIN RESULTS: The morphological index (MI) in RBCs using light microscopy and the maximum deformability index (DImax) using an ektacytometer were evaluated. In addition, the fractionation of RBCs and erythrocyte indices were measured. The MI at initiation of CPB was significantly higher without blood transfusion compared with baseline, although the DImax did not significantly decrease simultaneously. The DImax after separation from CPB and at completion of surgery were significantly lower than that at baseline. This lowered DImax was accompanied by a significantly reduced mean corpuscular volume and elevated mean corpuscular hemoglobin concentration compared with baseline. Dense RBC subpopulations increased after initiating CPB. The MI after separation from CPB and at completion of surgery partially recovered. Administered stored RBCs showed a high MI and the lowest DImax. CONCLUSIONS: Morphological changes at initiation of CPB are considered potentially reversible transformations without loss of the membrane surface area and do not have a significant effect on the DImax. A decrease in deformability likely is due to transfusion of stored RBCs.


Assuntos
Ponte Cardiopulmonar/métodos , Deformação Eritrocítica/fisiologia , Eritrócitos/patologia , Cardiopatias/cirurgia , Idoso , Transfusão de Sangue , Feminino , Cardiopatias/sangue , Humanos , Período Intraoperatório , Masculino , Prognóstico , Estudos Prospectivos
20.
Neurosci Res ; 148: 49-53, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30590075

RESUMO

l-3,4-Dihydroxyphenylalanine (l-DOPA) has been believed to be an inert amino acid precursor of dopamine, and is the most effective therapeutic agent in Parkinson's disease (PD). We proposed l-DOPA as a neurotransmitter in the central nervous system. Recently, the ocular albinism 1 gene product, OA1/GPR143 (GPR143), was identified as a receptor for l-DOPA. In this study, we examined by generating anti-human GPR143 antibody, the localization of GPR143-immunoreactive signals in the brains from control and PD subjects. GPR143-immunoreactive signals were detected throughout the entire midbrain including substantia nigra pars compacta. In the PD brains, we found that GPR143-immunoreactive signals were detected in Lewy bodies and were colocalized with immunoreactive signals with anti-human Ser129 phosphorylated α-synuclein antibody. Although the significance of its occurrence in the inclusion bodies is unknown, our finding suggests possible implications of GPR143 in PD.


Assuntos
Proteínas do Olho/metabolismo , Corpos de Lewy/metabolismo , Glicoproteínas de Membrana/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Encéfalo , Dopamina/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G , Receptores de Neurotransmissores , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA