RESUMO
Chicken embryos have many advantages in the study of amniote embryonic development. In particular, culture techniques developed for early-stage embryos have promoted the advancement of modern developmental studies using chicken embryos. However, the standard technique involves placing chicken embryos in the ventral-upward (ventral-up) orientation, limiting manipulation of the epiblast at the dorsal surface, which is the primary source of ectodermal and mesodermal tissues. To circumvent this limitation, we developed chicken embryo cultures in the dorsal-up orientation and exploited this technique to address diverse issues. In this article, we first review the history of chicken embryo culture techniques to evaluate the advantages and limitations of the current standard technique. Then, the dorsal-up technique is discussed. These technological discussions are followed by three different examples of experimental analyses using dorsal-up cultures to illustrate their advantages: (1) EdU labeling of epiblast cells to assess potential variation in the cell proliferation rate; (2) migration behaviors of N1 enhancer-active epiblast cells revealed by tracking cells with focal fluorescent dye labeling in dorsal-up embryo culture; and (3) neural crest development of mouse neural stem cells in chicken embryos.
Assuntos
Camadas Germinativas , Animais , Embrião de Galinha , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Crista Neural/citologia , Crista Neural/embriologia , Técnicas de Cultura Embrionária/métodos , Movimento Celular , Camundongos , Desenvolvimento Embrionário/fisiologiaRESUMO
INTRODUCTION: Total anomalous pulmonary venous connection (TAPVC) has a low prenatal diagnostic rate. Therefore, we investigated whether Doppler waveforms with a low pulsatility in the pulmonary veins can indicate fetal TAPVC. METHODS: This retrospective study included 16 fetuses with TAPVC, including 10 with complex congenital heart disease and 104 healthy fetuses that underwent fetal echocardiography. Pulmonary venous S and D wave flow velocities and the valley (representing the lowest velocity between the S and D waves) were measured. Valley indices I and II were then calculated as (velocity of valley/greater of the S and D wave velocities) and (velocity of valley/lesser of the S and D wave velocities), respectively. RESULTS: Supra/infracardiac TAPVC cases exhibited significantly greater valley indices than that of the healthy group. After adjusting for gestational age at fetal echocardiography, valley indices I (odds ratio [OR] 7.26, p < 0.01) and II (OR: 9.23, p < 0.01) were significant predictors of supra/infracardiac TAPVC. Furthermore, valley indices I and II exhibited a high area under the curve for detecting supra/infracardiac TAPVC, regardless of the presence of pulmonary venous obstruction. CONCLUSION: The valley index may be a useful tool for the detection of fetal TAPVC.
Assuntos
Síndrome de Cimitarra , Ultrassonografia Pré-Natal , Humanos , Feminino , Estudos Retrospectivos , Gravidez , Síndrome de Cimitarra/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/anormalidades , Adulto , Velocidade do Fluxo SanguíneoRESUMO
Reactive species are involved in various aspects of neoplastic diseases, including carcinogenesis, cancer-specific metabolism and therapeutics. Non-thermal plasma (NTP) can directly provide reactive species, by integrating atmospheric and interjacent molecules as substrates, to represent a handy strategy to load oxidative stress in situ. NTP causes apoptosis and/or ferroptosis specifically in cancer cells of various types. Plasma-activated Ringer's lactate (PAL) is another modality at the preclinical stage as cancer therapeutics, based on more stable reactive species. PAL specifically kills malignant mesothelioma (MM) cells, employing lysosomal ·NO as a switch from autophagy to ferroptosis. However, the entire molecular mechanisms have not been elucidated yet. Here we studied cytosolic iron regulations in MM and other cancer cells in response to PAL exposure. We discovered that cells with higher catalytic Fe(II) are more susceptible to PAL-induced ferroptosis. PAL caused a cytosolic catalytic Fe(II)-associated pathology through iron chaperones, poly (rC)-binding proteins (PCBP)1/2, inducing a disturbance in glutathione-regulated iron homeostasis. PCBP1/NCOA4-mediated ferritinophagy started at a later phase, further increasing cytosolic catalytic Fe(II), ending in ferroptosis. In contrast, PCBP2 after PAL exposure contributed to iron loading to mitochondria, leading to mitochondrial dysfunction. Therapeutic effect of PAL was successfully applied to an orthotopic MM xenograft model in mice. In conclusion, PAL can selectively sensitize MM cells to ferroptosis by remodeling cytoplasmic iron homeostasis, where glutathione and PCBPs play distinct roles, resulting in lethal ferritinophagy and mitochondrial dysfunction. Our findings indicate the clinical application of PAL as a ferroptosis-inducer and the potential of PCBPs as novel targets in cancer therapeutics.
Assuntos
Ferroptose , Mesotelioma Maligno , Mesotelioma , Doenças Mitocondriais , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Proteínas de Transporte , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Compostos Ferrosos , Glutationa , Ferro , Lactato de Ringer/farmacologia , Proteínas de Ligação a RNA/genéticaRESUMO
Functional magnetic resonance imaging (fMRI) in behaving monkeys has a strong potential to bridge the gap between human neuroimaging and primate neurophysiology. In monkey fMRI, to restrain head movements, researchers usually surgically implant a plastic head-post on the skull. Although time-proven to be effective, this technique could create burdens for animals, including a risk of infection and discomfort. Furthermore, the presence of extraneous objects on the skull, such as bone screws and dental cement, adversely affects signals near the cortical surface. These side effects are undesirable in terms of both the practical aspect of efficient data collection and the spirit of "refinement" from the 3R's. Here, we demonstrate that a completely non-invasive fMRI scan in awake monkeys is possible by using a plastic head mask made to fit the skull of individual animals. In all of the three monkeys tested, longitudinal, quantitative assessment of head movements showed that the plastic mask has effectively suppressed head movements, and we were able to obtain reliable retinotopic BOLD signals in a standard retinotopic mapping task. The present, easy-to-make plastic mask has a strong potential to simplify fMRI experiments in awake monkeys, while giving data that is as good as or even better quality than that obtained with the conventional head-post method.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Humanos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Haplorrinos , Cabeça/fisiologia , Movimentos da CabeçaRESUMO
OBJECTIVE: This study aimed to investigate the effect of plasma-activated Ringer's lactate solution (PAL) on oral squamous cell carcinoma (OSCC) cells and carcinogenic processes with a particular focus on iron and collagenous matrix formation. MATERIALS AND METHODS: We used three OSCC cell lines, one keratinocyte cell line, and two fibroblast lines, and cell viability assays, immunoblotting, flow cytometry, and transmission electron microscopy were performed to evaluate the effect and type of cell death. The effect of PAL treatment on lysyl oxidase (LOX) expression was investigated in vitro and in vivo. Tamoxifen-inducible Mob1a/b double-knockout mice were used for the in vivo experiment. RESULTS: PAL killed OSCC cells more effectively than the control nontumorous cells and suppressed cell migration and invasion. Ferroptosis occurred and the protein level of LOX was downregulated in cancer cells in vitro and in vivo. Additionally, PAL improved the survival rate of mice and suppressed collagenous matrix formation. CONCLUSIONS: We demonstrated that PAL specifically kills OSCC cells and that ferroptosis occurs in vitro and in vivo. Furthermore, PAL can prevent carcinogenesis and improve the survival rate of oral cancer, especially tongue cancer, by changing collagenous matrix formation via LOX suppression.
RESUMO
INTRODUCTION: Ovarian cancer is the leading cause of death among women with gynecological cancer, and novel treatment options are urgently needed. Extracellular vesicles (EVs), including exosomes, may be one of the most promising therapeutic tools for various diseases. In this study, we aimed to investigate the therapeutic effects of adipose-derived stem cell-derived EVs (ADSC-EVs) on ovarian cancer cell lines. MATERIALS AND METHODS: ADSCs and the ovarian cancer cell lines SKOV3 and OV90 were used for analysis. ADSC-EVs were isolated through ultracentrifugation and validated using a cryotransmission electron microscope, nanoparticle tracking analysis, and western blotting. Then, the effect of ADSC-EVs on ovarian cancer cells was investigated using IncuCyte and microRNA sequencing. Moreover, the potential functions of miRNAs were evaluated by gain-of function analysis and in silico analysis. RESULTS: ADSC-EVs suppressed SKOV3 and OV90 cell proliferation. In particular, small EVs (sEVs) from ADSCs exhibited a stronger antitumor effect than ADSC-medium/large EVs (m/lEVs). Comparison of the miRNA profiles between ADSC-sEVs and ADSC-m/lEVs, along with downstream pathway analysis, suggested the involvement of the let-7 family. Overexpression of hsa-let-7b-5p and hsa-let-7e-5p significantly suppressed the proliferation of SKOV3 cells. In silico analysis revealed that four potential target genes of hsa-let-7b-5p and hsa-let-7e-5p were significantly associated with the prognoses of the patients. CONCLUSION: ADSC-sEVs had a stronger antitumor effect than ADSC-m/lEVs. Hsa-let-7b-5p and hsa-let-7e-5p, which are highly abundant in ADSC-sEVs, suppressed cell proliferation. These findings may open up new possibilities for therapeutic approaches using ADSC-sEVs.
Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Proliferação de Células , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Células-Tronco/metabolismoRESUMO
Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.
Assuntos
Vesículas Extracelulares , Nanofios , Neoplasias Ovarianas , Feminino , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vesículas Extracelulares/metabolismo , Biomarcadores , Proteínas , Neoplasias Ovarianas/metabolismoRESUMO
This review provides a description of the historical background of the development of biological applications of low-temperature plasmas. The generation of plasma, methods and devices, plasma sources, and measurements of plasma properties, such as electron dynamics and chemical species generation in both gaseous and aqueous phases, were assessed. Currently, direct irradiation methods for plasma discharges contacting biological surfaces, such as the skin and teeth, are related to plasma biological interactions. Indirect methods using plasma-treated liquids are based on plasma-liquid interactions. The use of these two methods is rapidly increasing in preclinical studies and cancer therapy. The authors address the prospects for further developments in cancer therapeutic applications by understanding the interactions between the plasma and living organisms.
Assuntos
Neoplasias , Gases em Plasma , Humanos , Gases em Plasma/uso terapêutico , Espécies Reativas de Oxigênio/química , Temperatura , Gases , Neoplasias/terapiaRESUMO
Pheochromocytoma (PCC) can adversely affect Fontan circulation. However, there are few reports on its perioperative management before and after PCC resection in Fontan patients. A 24-year-old female patient with congenitally corrected transposition of the great arteries, ventricular septal defect, and pulmonary atresia who had undergone Fontan palliation developed heart failure caused by PCC. The patient was pre-conditioned for PCC resection with heart failure treatment, alpha-blocker titration, and careful infusion, and had a good intraoperative and postoperative course with no complications. Postoperative catheter data showed improvements in systemic vascular resistance, cardiac output, and central venous pressure compared with preoperative data. There is no established preconditioning method for PCC resection in patients with Fontan circulation. Careful perioperative management based on an understanding of the features of the Fontan circulation can lead to better outcomes. Learning objective: Pheochromocytoma (PCC) can occur in patients with Fontan circulation. Preoperative management and the PCC itself can adversely affect Fontan circulation, highlighting the importance of suspecting PCCs in Fontan patients based on symptoms such as heart failure, worsening arrhythmias, and headache, and emphasizing careful perioperative management.
RESUMO
Cold atmospheric pressure plasmas are promising medical tools that can assist in cancer treatment. While the medical pathology mechanism is substantially understood, knowledge of the contribution of reactive species formed in plasma and the mode of activation of biochemical pathways is insufficient. Herein, we present a concept involving antitumoral plasma-activated organics, which is envisaged to increase cytotoxicity levels against cancer cells. Ringer's acetate solution was irradiated by low-temperature plasma at atmospheric pressure and possible reaction pathways of the compound generation are presented. The chemical compounds formed by plasma treatment and their effects on non-tumorigenic breast epithelial cells (MCF-10A) and breast cancer cells (MCF-7) were investigated. The cell viability results have shown that plasma-derived compounds have both, stimulatory and inhibitory effects on cell viability, depending on the concentration of the generated compounds in the irradiated liquids. Previous studies have shown that oxidative stresses involving reactive oxygen and nitrogen species (RONS) can be used to kill cancer cells. Hence, while RONS offers promising first-step killing effects, cell viability results have shown that plasma-derived compounds, such as acetic anhydride and ethyl acetate, have the potential to play important roles in plasma-based cancer therapy.
Assuntos
Neoplasias , Gases em Plasma , Humanos , Solução de Ringer , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pressão AtmosféricaRESUMO
This study was aimed to identify a novel metastasis-promoting molecule and elucidate its functional and prognostic roles in cervical cancer. DDIT4 (DNA-damage-inducible transcript 4), a hypoxia-inducible gene, was identified by analyzing multiple microarray databases. The correlation between DDIT4 expression in immunohistochemistry and clinicopathological characteristics in the public database and our cohort was evaluated by statistical analysis. Transwell® assay and wound-healing assay to determine cell migration and invasion were performed. DDIT4 was knocked down using siRNA or lentiviral vectors. The potential downstream pathways of DDIT4 were explored and verified by a gene set enrichment analysis and western blotting. The in vivo metastatic capability was determined with the use of an intraperitoneal injection mouse model. In the analysis of the public database and our cohort, DDIT4 high expression was significantly related to short overall survival and lymph node metastasis in patients with early-stage cervical cancer. The knockdown of DDIT4 attenuated the migration and invasion activity of tumor cells in vitro and reduced the expression of epithelial-mesenchymal transition (EMT)-related proteins and the NF-κB pathway in cervical cancer cells. DDIT4 also promoted tumor progression in the mouse model. Our results indicate that DDIT4 can be a prognostic indicator in cervical cancer and promote lymph node metastasis, augmenting malignancy via the EMT and NF-kB pathways.
Assuntos
NF-kappa B , Neoplasias do Colo do Útero , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Metástase Linfática , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Fatores de Transcrição/metabolismoRESUMO
Animals can expect rewards under equivocal situations. The lateral hypothalamus (LH) is thought to process motivational information by producing valence signals of reward and punishment. Despite rich studies using rodents and non-human primates, these signals have been assessed separately in appetitive and aversive contexts; therefore, it remains unclear what information the LH encodes in equivocal situations. To address this issue, macaque monkeys were conditioned under a bivalent context in which reward and punishment were probabilistically delivered, in addition to appetitive and aversive contexts. The monkeys increased approaching behavior similarly in the bivalent and appetitive contexts as the reward probability increased. They increased avoiding behavior under the bivalent and aversive contexts as the punishment probability increased, but the mean frequency was lower under the bivalent context than under the aversive context. The population activity correlated with these mean behaviors. Moreover, the LH produced fine prediction signals of reward expectation, uncertainty, and predictability consistently in the bivalent and appetitive contexts by recruiting context-independent and context-dependent subpopulations of neurons, while it less produced punishment signals in the aversive and bivalent contexts. Further, neural ensembles encoded context information and "rewarding-unrewarding" and "reward-punishment" valence. These signals may motivate individuals robustly in equivocal environments.
Assuntos
Condicionamento Clássico , Região Hipotalâmica Lateral , Animais , Condicionamento Clássico/fisiologia , Recompensa , Primatas , Neurônios/fisiologia , Punição , HaplorrinosRESUMO
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g. culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.
Potential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to nonmalignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Assuntos
Neoplasias , Gases em Plasma , Humanos , Neoplasias/tratamento farmacológico , Meios de CulturaRESUMO
Plasma is the fourth physical state of matter, characterized by an ionized gaseous mixture, after solid, liquid, and gas phases, and contains a wide array of components such as ions, electrons, radicals, and ultraviolet ray. Whereas the sun and thunder are typical natural plasma, recent progress in the electronics enabled the generation of body-temperature plasma, designated as low-temperature plasma (LTP) or non-thermal plasma since the 1990s. LTP has attracted the attention of researchers for possible biological and medical applications. All the living species on earth utilize water as essential media for solvents and molecular transport. Thus, biological application of LTP naturally intervenes water whether LTP is exposed directly or indirectly, where plasma-activated lactate (PAL) is a standard, containing H2O2, NO2- and other identified molecules. Electron spin resonance and immunohistochemical studies demonstrated that LTP exposure is a handy method to load local oxidative stress. Cancer cells are characterized by persistent self-replication and high cytosolic catalytic Fe(II). Therefore, both direct exposure of LTP and PAL can provide higher damage to cancer cells in comparison to non-tumorous cells, which has been demonstrated in a variety of cancer types. The cell death mode is either apoptosis or ferroptosis, depending on the cancer-type. Thus, LTP and PAL are expected to work as an additional cancer therapy to the established guideline protocols, especially for use in somatic cavities or surgical margins.
Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , ApoptoseRESUMO
Low-temperature plasma (LTP) has been widely used in life science. Plasma-activated solutions were defined as solutions irradiated with LTP, and water, medium, and Ringer's solutions have been irradiated with LTP to produce plasma-activated solutions. They contain chemical compounds produced by reactions among LTP, air, and solutions. Reactive oxygen and nitrogen species (RONS) are major components in plasma-activated solutions and recent studies revealed that plasma-activated organic compounds are produced in plasma-activated Ringer's lactate solution (PAL). Many in vitro and in vivo studies demonstrated that PAL exhibits anti-tumor effects on cancers, and biochemical analyses revealed intracellular molecular mechanisms of cancer cell death by PAL.
Assuntos
Neoplasias , Humanos , Lactato de Ringer/química , Espécies Reativas de OxigênioRESUMO
Uterine leiomyosarcoma (ULMS) is a malignant stromal tumor arising from the myometrium with a poor prognosis and very limited response to current chemotherapy. This study aimed to identify novel targets for ULMS through a three-step screening process using a chemical library consisting of 1271 Food and Drug Administration-approved drugs. First, we evaluated their inhibitory effects on ULMS cells and identified four candidates: proscillaridin A, lanatoside C, floxuridine, and digoxin. Then, we subcutaneously or orthotopically transplanted SK-UT-1 cells into mice to establish mouse models. In vivo analyses showed that proscillaridin A and lanatoside C exerted a superior antitumor effect. The results of mRNA sequencing showed that uncoupling protein 2 (UCP2) was suppressed in the sirtuin signaling pathway, increasing reactive oxygen species (ROS) and inducing cell death. Moreover, the downregulation of UCP2 induced ROS and suppressed ULMS cell growth. Furthermore, analyses using clinical samples showed that UCP2 expression was significantly upregulated in ULMS tissues than in myoma tissues both at the RNA and protein levels. These findings suggested that UCP2 is a potential therapeutic target and can contribute to the development of novel therapeutic strategies in patients with ULMS.
Assuntos
Leiomiossarcoma , Proscilaridina , Neoplasias Uterinas , Humanos , Feminino , Animais , Camundongos , Leiomiossarcoma/tratamento farmacológico , Proteína Desacopladora 2 , Proscilaridina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Uterinas/tratamento farmacológicoRESUMO
The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (â¼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.
RESUMO
INTRODUCTION: Agenesis of the venous duct is rare, with an incidence rate of .04%-.6%. Abnormal drainage of the umbilical vein (UV) to superior vena cava (SVC) is seen in .5% of agenesis of the venous duct cases. We present a case of agenesis of the venous duct with drainage of the UV into the SVC accompanied by tetralogy of Fallot. CASE PRESENTATION: The fetus was diagnosed with agenesis of the venous duct and tetralogy of Fallot at 29 gestational weeks. The UV directly returned to the SVC. Cardiomegaly and pericardial effusion were observed but did not deteriorate. The female infant was born at 40 gestational weeks. Contrast-enhanced computed tomography showed that the UV was occluded at its proximal aspect. No abnormality of the portal system was noted. The infant underwent intracardiac repair and was doing well at 16 months of age. DISCUSSION/CONCLUSION: Although the extrahepatic drainage type of agenesis of the venous duct is occasionally associated with heart failure and hydrops, severe hydrops was absent in this case. It was speculated that vascular resistance in the long pathway to the SVC restricted direct inflow from the UV. Portosystemic shunts and agenesis of the portal system are reported complications of agenesis of the venous duct. Prenatal agenesis of the venous duct diagnosis may be crucial for early postnatal diagnosis of these conditions.
Assuntos
Tetralogia de Fallot , Veia Cava Superior , Edema , Feminino , Humanos , Gravidez , Ultrassonografia Pré-Natal , Veias UmbilicaisRESUMO
BACKGROUND: Chronic psychological stress is a risk factor for kidney disease, including kidney dysfunction and hypertension. Lysosomal CatK (cathepsin K) participates in various human pathobiologies. We investigated the role of CatK in kidney remodeling and hypertension in response to 5/6 nephrectomy injury in mice with or without chronic stress. METHODS: Male 7-week-old WT (wild type; CatK+/+) and CatK-deficient (CatK-/-) mice that were or were not subjected to chronic stress underwent 5/6 nephrectomy. At 8 weeks post-stress/surgery, the stress was observed to have accelerated injury-induced glomerulosclerosis, proteinuria, and blood pressure elevation. RESULTS: Compared with the nonstressed mice, the stressed mice showed increased levels of TLR (Toll-like receptor)-2/4, p22phox, gp91phox, CatK, MMP (matrix metalloproteinase)-2/9, collagen type I and III genes, PPAR-γ (peroxisome proliferator-activated receptor-gamma), NLRP-3 (NOD-like receptor thermal protein domain associated protein 3), p21, p16, and cleaved caspase-8 proteins, podocyte foot process effacement, macrophage accumulation, apoptosis, and decreased levels of Bcl-2 (B cell lymphoma 2) and Sirt1, as well as decreased glomerular desmin expression in the kidneys. These harmful changes were retarded by the genetic or pharmacological inhibition of CatK. Consistently, CatK inhibition ameliorated 5/6 nephrectomy-related kidney injury and dysfunction. In mesangial cells, CatK silencing or overexpression, respectively, reduced or increased the PPAR-γ and cleaved caspase-8 protein levels, providing evidence and a mechanistic explanation of CatK's involvement in PPAR-γ/caspase-8-mediated cell apoptosis in response to superoxide and stressed serum. CONCLUSIONS: These results demonstrate that CatK plays an essential role in kidney remodeling and hypertension in response to 5/6 nephrectomy or stress, possibly via a reduction of glomerular inflammation, apoptosis, and fibrosis, suggesting a novel therapeutic strategy for controlling kidney injury in mice under chronic psychological stress conditions.
Assuntos
Catepsina K/metabolismo , Nefropatias , Deficiência de Potássio , Estresse Fisiológico , Animais , Caspase 8/metabolismo , Catepsina K/genética , Humanos , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/prevenção & controle , Masculino , Camundongos , Nefrectomia , Receptores Ativados por Proliferador de Peroxissomo/metabolismoRESUMO
Studies in human subjects have revealed that autonomic responses provide objective and biologically relevant information about cognitive and affective states. Measures of autonomic responses can also be applied to studies of non-human primates, which are neuro-anatomically and physically similar to humans. Facial temperature and pupil size are measured remotely and can be applied to physiological experiments in primates, preferably in a head-fixed condition. However, detailed guidelines for the use of these measures in non-human primates are lacking. Here, we review the neuronal circuits and methodological considerations necessary for measuring and analyzing facial temperature and pupil size in non-human primates. Previous studies have shown that the modulation of these measures primarily reflects sympathetic reactions to cognitive and emotional processes, including alertness, attention, and mental effort, over different time scales. Integrated analyses of autonomic, behavioral, and neurophysiological data in primates are promising methods that reflect multiple dimensions of emotion and could provide tools for understanding the mechanisms underlying neuropsychiatric disorders and vulnerabilities characterized by cognitive and affective disturbances.