Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1027424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389167

RESUMO

Francisella tularensis, a bacterial causative agent of the zoonosis tularemia, is highly pathogenic to humans. The pathogenicity of this bacterium is characterized by intracellular growth in immune cells, like macrophages, and host immune suppression. However, the detailed mechanism of immune suppression by F. tularensis is still unclear. To identify the key factors causing Francisella-mediated immunosuppression, large-scale screening using a transposon random mutant library containing 3552 mutant strains of F. tularensis subsp. novicida (F. novicida) was performed. Thirteen mutants that caused stronger tumor necrosis factor (TNF)-α production in infected U937 human macrophage cells than the wild-type F. novicida strain were isolated. Sequencing analysis of transposon insertion sites revealed 10 genes, including six novel genes, as immunosuppressive factors of Francisella. Among these, the relationship of the pyrC gene, which encodes dihydroorotase in the pyrimidine biosynthesis pathway, with Francisella-mediated immunosuppression was investigated. The pyrC deletion mutant strain (ΔpyrC) induced higher TNF-α production in U937 host cells than the wild-type F. novicida strain. The ΔpyrC mutant strain was also found to enhance host interleukin-1ß and interferon (IFN)-ß production. The heat-inactivated ΔpyrC mutant strain could not induce host TNF-α production. Moreover, the production of IFN-ß resulting from ΔpyrC infection in U937 cells was repressed upon treatment with the stimulator of interferon genes (STING)-specific inhibitor, H-151. These results suggest that pyrC is related to the immunosuppressive activity and pathogenicity of Francisella via the STING pathway.


Assuntos
Francisella tularensis , Tularemia , Humanos , Fator de Necrose Tumoral alfa , Tularemia/microbiologia , Interferons
2.
Front Cell Infect Microbiol ; 10: 581864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553001

RESUMO

Francisella tularensis, the causative agent of tularemia, is transmitted by arthropod vectors within mammalian hosts. The detailed mechanisms contributing to growth and survival of Francisella within arthropod remain poorly understood. To identify novel factors supporting growth and survival of Francisella within arthropods, a transposon mutant library of F. tularensis subsp. novicida (F. novicida) was screened using an F. novicida-silkworm infection model. Among 750 transposon mutants screened, the mltA-encoding membrane-bound lytic murein transglycosylase A (MltA) was identified as a novel growth factor of F. novicida in silkworms. Silkworms infection with an mltA deletion mutant (ΔmltA) resulted in a reduction in the number of bacteria and prolonged survival. The ΔmltA strain exhibited limited intracellular growth and cytotoxicity in BmN4 silkworm ovary cells. Moreover, the ΔmltA strain induced higher expression of the antimicrobial peptide in silkworms compared to the wild-type strain. These results suggest that F. novicida MltA contributes to the survival of F. novicida in silkworms via immune suppression-related mechanisms. Intracellular growth of the ΔmltA strain was also reduced in human monocyte THP-1 cells. These results also suggest the contribution of MltA to pathogenicity in humans and utility of the F. novicida-silkworm infection model to explore Francisella infection.


Assuntos
Bombyx , Francisella tularensis , Francisella , Tularemia , Animais , Feminino , Francisella/genética , Glicosiltransferases , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptidoglicano
3.
PLoS One ; 14(12): e0226778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31877174

RESUMO

Francisella tularensis, a category-A bioterrorism agent causes tularemia. F. tularensis suppresses the immune response of host cells and intracellularly proliferates. However, the detailed mechanisms of immune suppression and intracellular growth are largely unknown. Here we developed a transposon mutant library to identify novel pathogenic factors of F. tularensis. Among 750 transposon mutants of F. tularensis subsp. novicida (F. novicida), 11 were isolated as less cytotoxic strains, and the genes responsible for cytotoxicity were identified. Among them, the function of slt, which encodes soluble lytic transglycosylase (SLT) was investigated in detail. An slt deletion mutant (Δslt) was less toxic to the human monocyte cell line THP-1 vs the wild-type strain. Although the wild-type strain proliferated in THP-1 cells, the number of intracellular Δslt mutant decreased in comparison. The Δslt mutant escaped from phagosomes during the early stages of infection, but the mutant was detected within the autophagosome, followed by degradation in lysosomes. Moreover, the Δslt mutant induced host cells to produce high levels of cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß, compared with the wild-type strain. These results suggest that the SLT of F. novicida is required for immune suppression and escape from autophagy to allow its survival in host cells.


Assuntos
Proteínas de Bactérias/imunologia , Francisella tularensis/imunologia , Glicosiltransferases/imunologia , Tularemia/imunologia , Animais , Linhagem Celular , Francisella tularensis/crescimento & desenvolvimento , Humanos , Evasão da Resposta Imune , Lisossomos/imunologia , Lisossomos/microbiologia , Camundongos , Monócitos/imunologia , Monócitos/microbiologia , Fagossomos/imunologia , Fagossomos/microbiologia , Tularemia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA