RESUMO
To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.
Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , DNA Fúngico/genética , DNA/genética , Marcação de Genes , Mortierella/genética , Ácido Araquidônico/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Engenharia Genética , Recombinação Homóloga , Mesilatos/farmacologia , Mortierella/classificação , Mortierella/efeitos dos fármacos , Mortierella/metabolismo , FilogeniaRESUMO
A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and ß-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and ß-glucosidase.
Assuntos
Etanol/metabolismo , Lacase/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Trametes/enzimologia , Clonagem Molecular , Fermentação , Lacase/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Trametes/genéticaRESUMO
Three extracellular ligninolytic oxidoreductases that are produced by a commercial laccase-producing Trametes sp. Ha1 were purified and characterized. This fungus showed strong ligninolytic oxidoreductase activity with and without hydrogen peroxide present in the reaction mixture. The oxidoreductase activity was found to be derived from two laccases and a peroxidase. One of the two laccases represents a main component of the commercial laccase preparation from Trametes sp. Ha1. This enzyme had a high thermostability, which makes it attractive for practical applications. The second laccase was induced by the addition of p-xylidine into the culture medium and showed unique characteristics with respect to pI value and substrate specificity. The peroxidase showed wide oxidation activity against aromatic compounds.