Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9323, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927219

RESUMO

Resistive-pulse analysis is a powerful tool for identifying micro- and nanoscale objects. For low-concentration specimens, the pulse responses are rare, and it is difficult to obtain a sufficient number of electrical waveforms to clearly characterize the targets and reduce noise. In this study, we conducted a periodic resistive-pulse analysis using an optical vortex and a double orifice, which repetitively senses a single micro- or nanoscale target particle with a diameter ranging from 700 nm to 2 [Formula: see text]m. The periodic motion results in the accumulation of a sufficient number of waveforms within a short period. Acquired pulses show periodic ionic-current drops associated with the translocation events through each orifice. Furthermore, a transparent fluidic device allows us to synchronously average the waveforms by the microscopic observation of the translocation events and improve the signal-to-noise ratio. By this method, we succeed in distinguishing single particle diameters. Additionally, the results of measured signals and the simultaneous high-speed observations are used to quantitatively and systematically discuss the effect of the complex fluid flow in the orifices on the amplitude of the resistive pulse. The synchronized resistive-pulse analysis by the optical vortex with the flow visualization improves the pulse-acquisition rate for a single specific particle and accuracy of the analysis, refining the micro- and nanoscale object identification.

2.
Nanoscale ; 12(12): 6673-6690, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32068212

RESUMO

We experimentally and theoretically characterize dielectric nano- and microparticle orbital motion induced by an optical vortex of the Laguerre-Gaussian beam. The key to stable orbiting of dielectric nanoparticles is hydrodynamic inter-particle interaction and microscale confinement of slit-like fluidic channels. As the number of particles in the orbit increases, the hydrodynamic inter-particle interaction accelerates orbital motion to overcome the inherent thermal fluctuation. The microscale confinement in the beam propagation direction helps to increase the number of trapped particles by reducing their probability of escape from the optical trap. The diameter of the orbit increases as the azimuthal mode of the optical vortex increases, but the orbital speed is shown to be insensitive to the azimuthal mode, provided that the number density of the particles in the orbit is same. We use experiments, simulation, and theory to quantify and compare the contributions of thermal fluctuation such as diffusion coefficients, optical forces, and hydrodynamic inter-particle interaction, and show that the hydrodynamic effect is significant for circumferential motion. The optical vortex beam with hydrodynamic inter-particle interaction and microscale confinement will contribute to biosciences and nanotechnology by aiding in developing new methods of manipulating dielectric and nanoscale biological samples in optical trapping communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA