Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39161822

RESUMO

We substantiated the effect of AM251, a cannabinoid receptor-1 (CB1R) antagonist, against ß-receptor stimulated myocardial infarction (MI) in streptozotocin (STZ)-induced diabetic mice via modulation- of the NF-kB signaling pathway. The different parameters were assessed such as ECG, hemodynamic, cardiac injury markers, oxidative stress parameters, pro-inflammatory cytokines, and histopathological abnormalities. Mice were fed a high-fat diet for 30 days. On day 7, to trigger diabetes, 150 mg/kg of STZ was injected intraperitoneally. On day 10, to determine whether diabetes developed, the blood level of glucose was monitored. From days 11-30, diabetic mice were injected with either CB1R agonist oleamide or antagonist AM251 or both, with concurrent administrations of ß-agonist isoproterenol on days 28 and 29 to induce MI. In comparison to normal, the myocardial infarcted diabetic animals demonstrated alterations in ECG, hemodynamic profiles, and diminished enzymatic activities (CK-MB, LDH, SOD, GSH, catalase), with concurrently increased MDA levels, which indicated increased oxidative stress in the myocardium. Additionally, higher concentrations of cytokines that signal myocardial inflammation, such as IL-1ß, IL-6, and TNF-α, were also noted. Furthermore, elevated myonecrosis, edema, and cell infiltration which is confirmed by histopathology of heart tissue. Treatment with AM251 significantly ameliorated myocardial redox status, reduced cytokines, and repaired enzymatic activities leading to subsequent recovery in cardiac function. AM251 effectively suppressed myonecrosis and edema. This study also showed that AM251 protects against myocardial inflammation and oxidative stress triggered by isoproterenol by blocking NF-kB signalling pathway. However, upregulation of the CB1R through oleamide showed significant cardiac toxicity. Conversely, the concurrent administration of oleamide and AM251 failed to induce cardiotoxic effects in isoproterenol-induced MI in diabetic mice which indicates downregulation of the CB1R might be associated with the cardioprotective effect.

2.
Eur J Pharmacol ; 977: 176707, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830456

RESUMO

The 5-HT3 receptor and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme play a crucial role in the pathogenesis of depression as their activation reduces serotonin contents in the brain. Since molecular docking analysis revealed lycopene as a potent 5-HT3 receptor antagonist and IDO1 inhibitor, we hypothesized that lycopene might disrupt the interplay between the 5-HT3 receptor and IDO1 to mitigate depression. In mice, the depression-like phenotypes were induced by inoculating Bacillus Calmette-Guerin (BCG). Lycopene (intraperitoneal; i.p.) was administered alone or in combination with 5-HT3 receptor antagonist ondansetron (i.p.) or IDO1 inhibitor minocycline (i.p.), and the behavioral screening was performed by the sucrose preference test, open field test, tail suspension test, and splash test which are based on the different principles. Further, the brains were subjected to the biochemical analysis of serotonin and its precursor tryptophan by the HPLC. The results showed depression-like behavior in BCG-inoculated mice, which was reversed by lycopene administration. Moreover, prior treatment with ondansetron or minocycline potentiated the antidepressant action of lycopene. Minocycline pretreatment also enhanced the antidepressant effect of ondansetron indicating the regulation of IDO1 activity by 5-HT3 receptor-triggered signaling. Biochemical analysis of brain samples revealed a drastic reduction in the levels of tryptophan and serotonin in depressed animals, which were restored following treatment with lycopene and its combination with ondansetron or minocycline. Taken together, the data from molecular docking, behavioral experiments, and biochemical estimation suggest that lycopene might block the 5-HT3 receptor and consequently inhibit the activity of IDO1 to ameliorate BCG-induced depression in mice.


Assuntos
Encéfalo , Depressão , Indolamina-Pirrol 2,3,-Dioxigenase , Licopeno , Receptores 5-HT3 de Serotonina , Animais , Licopeno/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Fenótipo , Simulação de Acoplamento Molecular , Serotonina/metabolismo , Vacina BCG/farmacologia , Ondansetron/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antidepressivos/farmacologia , Minociclina/farmacologia
3.
Curr Alzheimer Res ; 21(1): 50-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529600

RESUMO

Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-ß plaques and tau protein-rich neurofibrillary tangles. Amyloid-ß also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.


Assuntos
Doença de Alzheimer , Receptores Colinérgicos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Receptores Colinérgicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
4.
Peptides ; 175: 171167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325715

RESUMO

Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.


Assuntos
Artrite Reumatoide , Asma , Doenças do Sistema Nervoso , Neuropeptídeos , Animais , Ansiedade , Asma/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Humanos
5.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338960

RESUMO

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Assuntos
Canabinoides , Infarto do Miocárdio , Receptor CB1 de Canabinoide , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA