RESUMO
OBJECTIVE: Multiple sclerosis (MS) is a complex multifactorial neuro-inflammatory disorder. This complexity arises from the evidence suggesting that MS is developed by interacting with environmental and genetic factors. This study aimed to evaluate the miR-106a, miR-125b, and miR330- expression levels in relapsing-remitting multiple sclerosis (RRMS) patients. The miRNAs' impact on TNFSF4 and Sp1 genes through the NF-кB/TNF-α signaling pathway was analyzed by measuring the expression levels in case and controls. MATERIALS AND METHODS: In this in silico-experimental study, we evaluated the association of miR-106a, miR- 125b, and miR330- with TNFSF4 and SP1 gene expression levels in 60 RRMS patients and 30 healthy controls by real-time polymerase chain reaction (PCR). RESULTS: The expression levels of miR-330, miR-106a, and miR125-b in blood samples of RRMS patients were predominantly reduced. The expression of TNFSF4 in patients demonstrated a significant enhancement, in contrast to the diminishing Sp1 gene expression level in controls. CONCLUSION: Our ï¬ndings indicated an association between miR-106a and miR-330 and miR125-b expression and RRMS in our study population. Our data suggested that the miR106-a, miR125-b, and mir330- expression are correlated with TNFSF4 and Sp1 gene expression levels.
RESUMO
MicroARNAs (miRNAs) are linked to a variety of cancers, which resulted in molecular pathway dysregulation in chronic lymphocytic leukemia (CLL). Using five dysregulated miRNAs identified by literature mining and in silico analysis, we were able to demonstrate the critical role that the TGFBR1 and TGFB receptor signaling pathways play in the state of CLL. Assays using real-time PCR were run on 30 patients and 30 healthy controls. This study showed that patient samples have considerably higher levels of miR-574 and miR-499. Notably, the same groups had lower expression levels of miR-125b, miR-106a, and miR-9. Furthermore, we suggested that TGFBR1 and TGFBR2 expression levels were decreased in patients, and we suggested that these genes could be targets for our profile miRNAs. In the current study, we hypothesized that miR-574, miR-499, miR-125b, miR-106a, and miR-9 are likely five new potential biomarkers for early diagnosis. Our research also showed that these profile miRNAs have a role in the formation of CLL, possibly through controlling the TGFBR1 and TGFBR2 pathways. This suggests that these profile miRNAs could serve as biomarkers for the diagnosis and prognosis of CLL.