Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Jpn J Radiol ; 41(11): 1216-1225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37256470

RESUMO

PURPOSE: Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS: We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS: Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION: Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.


Assuntos
Aprendizado Profundo , Doença de Parkinson , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Negra , Melaninas , Doença de Parkinson/diagnóstico por imagem
2.
Sci Rep ; 12(1): 10362, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725760

RESUMO

The purpose of this study is to evaluate whether thin-slice high-resolution 2D fat-suppressed proton density-weighted image of the knee joint using denoising approach with deep learning-based reconstruction (dDLR) with MPR is more useful than 3D FS-PD multi planar voxel image. Twelve patients who underwent MRI of the knee at 3T and 13 knees were enrolled. Denoising effect was quantitatively evaluated by comparing the coefficient of variation (CV) before and after dDLR. For the qualitative assessment, two radiologists evaluated image quality, artifacts, anatomical structures, and abnormal findings using a 5-point Likert scale between 2D and 3D. All of them were statistically analyzed. Gwet's agreement coefficients were also calculated. For the scores of abnormal findings, we calculated the percentages of the cases with agreement with high confidence. The CV after dDLR was significantly lower than the one before dDLR (p < 0.05). As for image quality, artifacts and anatomical structure, no significant differences were found except for flow artifact (p < 0.05). The agreement was significantly higher in 2D than in 3D in abnormal findings (p < 0.05). In abnormal findings, the percentage with high confidence was higher in 2D than in 3D (p < 0.05). By applying dDLR to 2D, almost equivalent image quality to 3D could be obtained. Furthermore, abnormal findings could be depicted with greater confidence and consistency, indicating that 2D with dDLR can be a promising imaging method for the knee joint disease evaluation.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Magn Reson Med Sci ; 20(4): 450-456, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32963184

RESUMO

To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reliability of diffusion metrics were evaluated with 20 patients. Image noise was significantly decreased with dDLR. Although fractional anisotropy (FA) of deep gray matter was overestimated when the number of image acquisitions was one (NAQ1), FA in NAQ1 with dDLR became closer to that in NAQ5.


Assuntos
Aprendizado Profundo , Imagem de Tensor de Difusão , Anisotropia , Benchmarking , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
4.
Magn Reson Med Sci ; 19(3): 195-206, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484849

RESUMO

PURPOSE: To test whether our proposed denoising approach with deep learning-based reconstruction (dDLR) can effectively denoise brain MR images. METHODS: In an initial experimental study, we obtained brain images from five volunteers and added different artificial noise levels. Denoising was applied to the modified images using a denoising convolutional neural network (DnCNN), a shrinkage convolutional neural network (SCNN), and dDLR. Using these brain MR images, we compared the structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR) between the three denoising methods. Two neuroradiologists assessed the image quality of the three types of images. In the clinical study, we evaluated the denoising effect of dDLR in brain images with different levels of actual noise such as thermal noise. Specifically, we obtained 2D-T2-weighted image, 2D-fluid-attenuated inversion recovery (FLAIR) and 3D-magnetization-prepared rapid acquisition with gradient echo (MPRAGE) from 15 healthy volunteers at two different settings for the number of image acquisitions (NAQ): NAQ2 and NAQ5. We reconstructed dDLR-processed NAQ2 from NAQ2, then compared with SSIM and PSNR. Two neuroradiologists separately assessed the image quality of NAQ5, NAQ2 and dDLR-NAQ2. Statistical analysis was performed in the experimental and clinical study. In the clinical study, the inter-observer agreement was also assessed. RESULTS: In the experimental study, PSNR and SSIM for dDLR were statistically higher than those of DnCNN and SCNN (P < 0.001). The image quality of dDLR was also superior to DnCNN and SCNN. In the clinical study, dDLR-NAQ2 was significantly better than NAQ2 images for SSIM and PSNR in all three sequences (P < 0.05), except for PSNR in FLAIR. For all qualitative items, dDLR-NAQ2 had equivalent or better image quality than NAQ5, and superior quality to that of NAQ2 (P < 0.05), for all criteria except artifact. The inter-observer agreement ranged from substantial to near perfect. CONCLUSION: dDLR reduces image noise while preserving image quality on brain MR images.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA