Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ACS Omega ; 9(3): 3916-3922, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284019

RESUMO

We report on the enhancement of the light-emitting and mechanical performance of multifunctional dielectric elastomeric actuators by combining liquid eutectic gallium indium metal with a stretchable and transparent hybrid electrode composed of silver nanowires (AgNWs) and carbon nanotubes (CNTs). The device shows improved optical properties, electrical conductivity, and stability for electroluminescent dielectric elastomer actuators compared with previous works. Combining single-walled CNTs (SWCNTs) with AgNWs impeded the chemical reaction between the liquid metal and AgNWs, resulting in a more stable operation of the device. The maximum luminance and maximum strain of the electroluminescent dielectric elastomer actuator increased by 50% (from 300 to 450 cd m-2) and 44% (from 85 to 122%), respectively.

2.
ACS Nano ; 17(19): 18873-18882, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772489

RESUMO

Chiral materials have garnered significant attention in the field of condensed matter physics. Nevertheless, the magnetic moment induced by the chiral spatial motion of electrons in helical materials, such as elemental Te and Se, remains inadequately understood. In this work, we investigate the development of quantum angular momentum enforced by chirality by using static and time-dependent density functional theory calculations for an elemental Se chain. Our findings reveal the emergence of an unconventional orbital texture driven by the chiral geometry, giving rise to a nonvanishing current-induced orbital moment. By incorporating spin-orbit coupling, we demonstrate that current-induced spin accumulation arises in the chiral chain, which fundamentally differs from the conventional Edelstein effect. Furthermore, we demonstrate optoelectronic detection of the orbital angular momentum in the chiral Se chain, providing an alternative to the interband Berry curvature, which is ill-defined in low dimensions.

3.
Opt Lett ; 47(24): 6305-6308, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538424

RESUMO

Absorbers for long-wavelength infrared (LWIR) are designed to have a reduced geometry fitted to a gold cross antenna and numerically studied. Compared to the square membrane geometry widely used in conventional microbolometers, the reduced geometry results in smaller thermal capacities of the vanadium dioxide (VO2) and silicon nitride (Si3N4) layers. However, near-field focusing by the cross antenna leads to a high LWIR absorption. Calculations show that the temperature change per incident energy increases with a decrease in the arm width, and the reduced absorber surpasses the square geometry for all incident angles and polarizations. The antenna-based reduced absorber studied here could serve as an alternative geometry for high-performance microbolometers.

4.
Psychiatry Investig ; 19(11): 927-936, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36444156

RESUMO

OBJECTIVE: To identify the factors affecting anger in post-traumatic stress disorder (PTSD) patients who underwent Clinician-Administered PTSD Scale (CAPS) and Minnesota Multiphasic Personality Inventory-2 (MMPI-2). METHODS: We retrospectively reviewed patients who underwent CAPS and MMPI-2 at Veteran Health Service Medical Center, Seoul, Korea. Based on the CAPS score, the patients were divided into the PTSD group (n=46) and the trauma exposed without PTSD group (n=29). After checking the correlation between anger, CAPS, and MMPI-2 scales, logistic regression analysis was performed to identify the risk factors for clinically relevant symptoms. RESULTS: The PTSD group showed significant differences in schizophrenia-related symptoms, ideas of persecution, aggressiveness, psychoticism, and anger scales compared to the trauma-exposed without PTSD group. There was a significant correlation between anger, CAPS, and MMPI-2 except masculinity/femininity, disconstraint, and MacAndrew Alcoholism-Revised. In particular, anger has been shown to have a substantial connection with paranoia, schizophrenia-related symptoms, ideas of persecution, aberrant experiences, and psychoticism. Multiple regression analysis identified that the only significant risk factor for anger was the negative emotionality/neuroticism scale (odds ratio=1.152, p<0.001). CONCLUSION: The PTSD group had increased anger compared to the trauma-exposed without PTSD group, and that negative emotions may be a risk factor for PTSD.

5.
Sci Rep ; 11(1): 15863, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354170

RESUMO

One critical factor for bolometer sensitivity is efficient electromagnetic heating of thermistor materials, which plasmonic nanogap structures can provide through the electric field enhancement. In this report, using finite element method simulation, electromagnetic heating of nanorod dimer antennas with a nanogap filled with vanadium dioxide (VO2) was studied for long-wavelength infrared detection. Because VO2 is a thermistor material, the electrical resistance between the two dimer ends depends on the dimer's temperature. The simulation results show that, due to the high heating ability of the nanogap, the temperature rise is several times higher than expected from the areal coverage. This excellent performance is observed over various nanorod lengths and gap widths, ensuring wavelength tunability and ultrafast operating speed, thereby making the dimer structures a promising candidate for high sensitivity bolometers.

6.
ACS Nano ; 15(3): 5276-5283, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33625831

RESUMO

Two-dimensional (2D) materials are promising candidates for building ultrashort-channel devices because their thickness can be reduced down to a single atomic layer. Here, we demonstrate an ultraflat nanogap platform based on atomic layer deposition (ALD) and utilize the structure to fabricate 2D material-based optical and electronic devices. In our method, ultraflat metal surfaces, template-stripped from a Si wafer mold, are separated by an Al2O3 ALD layer down to a gap width of 10 nm. Surfaces of both electrodes are vertically aligned without a height difference, and each electrode is ultraflat with a measured root-mean-square roughness as low as 0.315 nm, smaller than the thickness of monolayer graphene. Simply by placing 2D material flakes on top of the platform, short-channel field-effect transistors based on black phosphorus and MoS2 are fabricated, exhibiting their typical transistor characteristics. Furthermore, we use the same platform to demonstrate photodetectors with a nanoscale photosensitive channel, exhibiting higher photosensitivity compared to microscale gap channels. Our wafer-scale atomic layer lithography method can benefit a diverse range of 2D optical and electronic applications.

7.
ACS Nano ; 12(3): 2780-2788, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29498820

RESUMO

Metal nanoparticles that can couple light into tightly confined surface plasmons bridge the size mismatch between the wavelength of light and nanostructures are one of the smallest building blocks of nano-optics. However, plasmonic nanoparticles have been primarily studied to concentrate or scatter incident light as an ultrasmall antenna, while studies of their intrinsic plasmonic light emission properties have been limited. Although light emission from plasmonic structures can be achieved by inelastic electron tunneling, this strategy cannot easily be applied to isolated single nanoparticles due to the difficulty in making electrical connections without disrupting the particle plasmon mode. Here, we solve this problem by placing gold nanoparticles on a graphene tunnel junction. The monolayer graphene provides a transparent counter electrode for tunneling while preserving the ultrasmall footprint and plasmonic mode of nanoparticle. The tunneling electrons excite the plasmonic mode, followed by radiative decay of the plasmon. We also demonstrate that a dielectric overlayer atop the graphene tunnel junction can be used to tune the light emission. We show the simplicity and scalability of this approach by achieving electroluminescence from single nanoparticles without bulky contacts as well as millimeter-sized arrays of nanoparticles.

8.
ACS Appl Mater Interfaces ; 9(14): 12654-12662, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28286947

RESUMO

A high spatial resolution, cyclical thinning method for realizing black phosphorus (BP) heterostructures is reported. This process utilizes a cyclic technique involving BP surface oxidation and vacuum annealing to create BP flakes as thin as 1.6 nm. The process also utilizes a spatially patternable mask created by evaporating Al that oxidizes to form Al2O3, which stabilizes the unetched BP regions and enables the formation of lateral heterostructures with spatial resolution as small as 150 nm. This thinning/patterning technique has also been used to create the first-ever lateral heterostructure BP metal oxide semiconductor field-effect transistor (MOSFET), in which half of a BP flake was thinned in order to increase its band gap. This heterostructure MOSFET showed an ON/OFF current ratio improvement of 1000× compared to homojunction MOSFETs.

9.
ACS Nano ; 10(11): 10500-10506, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934086

RESUMO

With strong light-matter interaction in their atomically thin layered structures, two-dimensional (2D) materials have been widely investigated for optoelectronic applications such as photodetectors and photovoltaic devices. Depending on the aim of optoelectronic applications, different device structures have been employed. Lateral phototransistor structures have been employed for high optical gain, while vertical photodiode structures have been employed for fast response and low power operation. Herein, we demonstrate a multimodal photodetector platform based on 2D materials, combining both a phototransistor and a photodiode and taking the corresponding desirable characteristics from each structure within a single device. In this platform, a multilayered transition-metal dichalcogenide flake is transferred on top of metal electrodes, and a transparent gate electrode is employed. The channel region of the flake between electrodes operates as a phototransistor providing a high gain mode, while the electrode region in the same flake operates as a vertical Schottky photodiode providing a fast response mode. These modes can be dynamically selected by controlling the drain voltage and gate voltage.

10.
ACS Nano ; 10(3): 3791-800, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26914179

RESUMO

The effect of thickness, temperature, and source-drain bias voltage, V(DS), on the subthreshold slope, SS, and off-state properties of black phosphorus (BP) field-effect transistors is reported. Locally back-gated p-MOSFETs with thin HfO2 gate dielectrics were analyzed using exfoliated BP layers ranging in thickness from ∼4 to 14 nm. SS was found to degrade with increasing V(DS) and to a greater extent in thicker flakes. In one of the thinnest devices, SS values as low as 126 mV/decade were achieved at V(DS) = -0.1 V, and the devices displayed record performance at V(DS) = -1.0 V with SS = 161 mV/decade and on-to-off current ratio of 2.84 × 10(3) within a 1 V gate bias window. A one-dimensional transport model has been utilized to extract the band gap, interface state density, and the work function of the metal contacts. The model shows that SS degradation in BP MOSFETs occurs due to the ambipolar turn on of the carriers injected at the drain before the onset of purely thermionic-limited transport at the source. The model is further utilized to provide design guidelines for achieving ideal SS and meet off-state leakage targets, and it is found that band edge work functions and thin flakes are required for ideal operation at high V(DS). This work represents a comprehensive analysis of the fundamental performance limitations of Schottky-contacted BP MOSFETs under realistic operating conditions.

11.
Faraday Discuss ; 178: 195-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760454

RESUMO

We have investigated the extraordinary optical transmission of terahertz waves through an array of nanogaps with varying dimensions and periodicities, and used this platform to demonstrate terahertz sensing of a thin film of single-walled carbon nanotubes. We have used atomic layer lithography to fabricate periodic arrays of nanogap loops that have a gap size of 2 nm and a loop length of 100 µm (aspect ratio of 50,000). These sub-mm-scale loops of nanogaps can sustain terahertz electromagnetic resonances along the contour. We have characterized the transmission of terahertz waves through the nanogap arrays and investigated the influence of inter-gap electromagnetic coupling as the array periodicity shrinks from 100 µm to 4 µm. While the gaps occupy only 0.1% of the surface area, we have measured an amplitude (|E|) transmittance of over 50% due to the strong and broadband field enhancement inside the nanogaps. The absolute transmission through the 2 nm gaps along the rectangular loops can be boosted up to 25%, while it is only 1% for annular gaps with the same perimeter. Furthermore, the extremely tight field confinement and strong field enhancement near the 2 nm gap lead to 43% extinction of THz waves in a 10 nm-thick film of single-walled carbon nanotubes over the gaps. On the other hand, THz extinction by the same nanotube film on a bare glass substrate is only 2%. These nanogaps pave the way toward developing sensitive terahertz detectors for biological and chemical targets.

13.
Analyst ; 137(14): 3249-54, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22497005

RESUMO

We developed an olfactory-nanovesicle-fused carbon-nanotube-transistor biosensor (OCB) that mimics the responses of a canine nose for the sensitive and selective detection of hexanal, an indicator of the oxidation of food. OCBs allowed us to detect hexanal down to 1 fM concentration in real-time. Significantly, we demonstrated the detection of hexanal with an excellent selectivity capable of discriminating hexanal from analogous compounds such as pentanal, heptanal, and octanal. Furthermore, we successfully detected hexanal in spoiled milk without any pretreatment processes. Considering these results, our sensor platform should offer a new method for the assessment of food quality and contribute to the development of portable sensing devices.


Assuntos
Biomimética/métodos , Técnicas Biossensoriais/métodos , Análise de Alimentos/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nariz , Transistores Eletrônicos , Aldeídos/química , Animais , Biomimética/instrumentação , Técnicas Biossensoriais/instrumentação , Cães , Análise de Alimentos/instrumentação , Contaminação de Alimentos/análise , Células HEK293 , Humanos , Leite/química , Nanotecnologia/instrumentação , Fatores de Tempo
14.
ACS Nano ; 5(9): 7383-90, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21819114

RESUMO

Carbon nanotube (CNT) networks on solid substrates have recently drawn attention as a means to direct the growth and differentiation of stem cells. However, it is still not clear whether cells can recognize individual CNTs with a sub-2 nm diameter, and directional nanostructured substrates such as aligned CNT networks have not been utilized to control cell behaviors. Herein, we report that human mesenchymal stem cells (hMSCs) grown on CNT networks could recognize the arrangement of individual CNTs in the CNT networks, which allowed us to control the growth direction and differentiation of the hMSCs. We achieved the directional growth of hMSCs following the alignment direction of the individual CNTs. Furthermore, hMSCs on aligned CNT networks exhibited enhanced proliferation and osteogenic differentiation compared to those on randomly oriented CNT networks. As a plausible explanation for the enhanced proliferation and osteogenic differentiation, we proposed mechanotransduction pathways triggered by high cytoskeletal tension in the aligned hMSCs. Our findings provide new insights regarding the capability of cells to recognize nanostructures smaller than proteins and indicate their potential applications for regenerative tissue engineering.


Assuntos
Diferenciação Celular , Divisão Celular , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono , Humanos
15.
Lab Chip ; 11(13): 2262-7, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21547310

RESUMO

We have developed a method to monitor the activities of human taste receptor protein in lipid membrane using carbon nanotube transistors, enabling a "bioelectronic super-taster (BST)", a taste sensor with human-tongue-like selectivity. In this work, human bitter taste receptor protein expressed in E. coli was immobilized on a single-walled carbon nanotube field effect transistor (swCNT-FET) with the lipid membrane. Then, the protein binding activity was monitored using the underlying swCNT-FET, leading to the operation as a BST device. The fabricated BST device could detect bitter tastants at 100 fM concentrations and distinguish between bitter and non-bitter tastants with similar chemical structures just like a human tongue. Furthermore, this strategy was utilized to differentiate the responses of taster or non-taster types of the bitter taste receptor proteins.


Assuntos
Biomimética/instrumentação , Equipamentos e Provisões Elétricas , Nanotubos de Carbono/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Paladar , Escherichia coli/genética , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Receptores Acoplados a Proteínas G/genética , Língua/fisiologia , Transistores Eletrônicos
17.
ACS Nano ; 4(12): 7612-8, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21050016

RESUMO

We have developed a wide contact structure for low-noise nanochannel devices based on a carbon nanotube (CNT) network. This low-noise CNT network-based device has a dumbbell-shaped channel, which has wide CNT/electrode contact regions and, in effect, reduces the contact noise. We also performed a systematic analysis of structured CNT networks and established an empirical formula that can explain the noise behavior of arbitrary-shaped CNT network-based devices including the effect of contact regions and CNT alignment. Interestingly, our analysis revealed that the noise amplitude of aligned CNT networks behaves quite differently compared with that of randomly oriented CNT networks. Our results should be an important guideline in designing low-noise nanoscale devices based on a CNT network for various applications such as a highly sensitive low-noise sensor.


Assuntos
Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Condutividade Elétrica , Eletrodos
18.
Nanotechnology ; 21(23): 235102, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20463384

RESUMO

Researchers have made extensive efforts to mimic or reverse-engineer in vivo neural circuits using micropatterning technology. Various surface chemical cues or topographical structures have been proposed to design neuronal networks in vitro. In this paper, we propose a carbon nanotube (CNT)-based network engineering method which naturally mimics the structure of extracellular matrix (ECM). On CNT patterned substrates, poly-L-lysine (PLL) was coated, and E18 rat hippocampal neurons were cultured. In the early developmental stage, soma adhesion and neurite extension occurred in disregard of the surface CNT patterns. However, later the majority of neurites selectively grew along CNT patterns and extended further than other neurites that originally did not follow the patterns. Long-term cultured neuronal networks had a strong resemblance to the in vivo neural circuit structures. The selective guidance is possibly attributed to higher PLL adsorption on CNT patterns and the nanomesh structure of the CNT patterns. The results showed that CNT patterned substrates can be used as novel neuronal patterning substrates for in vitro neural engineering.


Assuntos
Materiais Biomiméticos/química , Nanotubos de Carbono/química , Rede Nervosa/citologia , Neuritos/metabolismo , Neurônios/citologia , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Células Cultivadas , Hipocampo/citologia , Polilisina/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA